118
Y. Wang et al. / Bioorg. Med. Chem. Lett. 19 (2009) 114–118
L.; Meissner, J. W. G.; Owen, D. A.; Thomas, E. J. Bioorg. Med. Chem. Lett. 2007,
show a hERG liability (binding IC50 > 63 lM). In a CYP450 screen,
17, 6806; (f) Watson, R. J.; Allen, D. R.; Birch, H. L.; Chapman, G. A.; Galvin, F. C.;
Jopling, L. A.; Knight, R. L.; Meier, D.; Oliver, K.; Meissner, J. W. G.; Owen, D. A.;
Thomas, E. J.; Tremayne, N.; Williams, S. C. Bioorg. Med. Chem. Lett. 2008, 18,
147; (g) Du, X.; Chen, X.; Mihalic, J. T.; Deignan, J.; Duquette, J.; Li, A.-R.; Lemon,
B.; Ma, J.; Miao, S.; Ebsworth, K.; Sullivan, T. J.; Tonn, G.; Collins, T. L.; Medina, J.
C. Bioorg. Med. Chem. Lett. 2008, 18, 608; (h) Knight, R. L.; Allen, D. R.; Birch, H.
L.; Chapman, G. A.; Galvin, F. C.; Jopling, L. A.; Lock, C. J.; Meissner, J. W. G.;
Owen, D. A.; Raphy, G.; Watson, R. J.; Williams, S. C. Bioorg. Med. Chem. Lett.
2008, 18, 629; (i) Li, A.-R.; Johnson, M. G.; Liu, J.; Chen, X.; Du, X.; Mihalic, J. T.;
Deignan, J.; Gustin, D. J.; Duquette, J.; Fu, Z.; Zhu, L.; Marcus, A. P.; Bergeron, P.;
McGee, L. R.; Danao, J.; Lemon, B.; Carabeo, T.; Sullivan, T.; Ma, J.; Tang, L.; Tonn,
G.; Collins, T. L.; Medina, J. C. Bioorg. Med. Chem. Lett. 2008, 18, 688; (j) Hayes,
M. E.; Wallace, G. A.; Grongsaard, P.; Bischoff, A.; George, D. M.; Miao, W.;
McPherson, M. J.; Stoffel, R. H.; Green, D. W.; Roth, G. P. Bioorg. Med. Chem. Lett.
2008, 18, 1573.
the ketone 18a showed some inhibition for two major P450
isozymes [IC50 = 0.16 M for 1A2 and 0.32 M for 3A4 (red)]. How-
ever, little 1A2 and 3A4 inhibition was observed for the more
potent alcohol analog 18h [IC50s: 1A2, > 25 M; 2C9, 4.0 M;
2C19, 4.0 M; 2D6, > 25 M; 3A4(red), > 25 M; 3A4(green),
13.6 M]. The compounds in the series generally exhibited good
artificial membrane permeability (e.g., 352 nm/s for 18a) but low
aqueous solubility (e.g., 0.004 mg/mL for 18a) unless a polar group
was introduced to the molecule. For example, the compound with
(S)-3-hydroxymethyl group on the piperazine ring (18c) had a sol-
ubility of 0.04 mg/mL and permeability of 560 nm/s. The pharma-
cokinetic properties for compound 18a were determined in rat,
dosed 1.1 mg/kg iv and 2.0 mg/kg po. This compound demon-
strated high clearance (Clb = 108 mL/min/kg) with a half-life of
0.5 h, volume of distribution (Vdss) of 2.2 L/kg and oral bioavail-
ability (F) of 8%. The preliminary developability data suggest that
this series constitutes a reasonable starting point for further lead
optimization.
l
l
l
l
l
l
l
l
10. For a recent review on small-molecule CXCR3 ligands, see: Wijtmans, M.;
Verzijl, D.; Leurs, R.; de Esch, I. J. P.; Smit, M. J. ChemMedChem 2008, 3, 861.
11. Functional studies (IP-10 induced Ca2+ flux) were performed on a CHO-K1
(Chinese hamster ovary) cell line stably expressing CXCR3 and
Ga16
(Euroscreen, Brussels, Belgium). Cells were plated and grown for 24 h in 96-
well, black wall, clear bottom plates (Packard View). On day of assay, cells were
loaded with fluoro-4-acetoxymethyl ester fluorescent indicator dye (Fluoro-4
AM, from Molecular Probes) and treated for 10 min at 37 °C with
a
concentration range of compound (0.01–33 M). Plates were placed onto
l
FLIPR (Fluorometric Imaging Plate Reader, Molecular Devices, Sunnyvale, CA)
for analysis. The percent of maximal human IP-10 induced Ca2+ mobilization
induced by 33 nM IP-10, an EC80 concentration against CXCR3, was determined
after treatment of cells with each concentration of compound. The IC50 values
were calculated as the concentration of test compound that inhibits 50% of the
maximal response induced by IP-10. The FLIPR results are expressed as a mean
of two or more individual experiments.
In summary, exploration of a novel series of camphor sulfona-
mides identified via HTS led to the discovery of hIP-10 competitive
and reversible CXCR3 antagonists such as 18a and 18h with excel-
lent functional activity, cross-species activity and selectivity. The
further optimization of this series (e.g., camphor replacement) to
improve PK will be the subject of future publications.
12. For synthesis and compound characterization, see: Busch-Petersen, J.; Jin, J.;
Graybill, T. L.; Kiesow, T. J.; Rivero, R. A.; Wang, F.; Wang, Y. Chem. Abstr. 2007,
147, 143569. WO 2007076318A2, 2007.
13. All substituted piperazines used for synthesis were racemic unless stated
otherwise. Unprotected diamines were used if the reacting amino site was less
hindered (more reactive) compared to the other amino site.
Acknowledgments
We thank Minghui Wang for NMR, Manon S. Villeneuve for chi-
ral HPLC separation and Doug J. Minick for VCD analysis.
14. Aggarwal, V. K.; Charmant, J.; Dudin, L.; Porcelloni, M.; Richardson, J. PNAS
2004, 101, 5467.
15. The methyl Grignard addition to 5 formed the tertiary alcohol 10 as a single
diastereomer.
References and notes
16. Compounds 5A–C (trans-2,5-dimethyl piperazine was used for the preparation
of 5C) and 5G–J were tested as a 1:1 mixtures of diastereomers.
17. Camphor alcohols 8a, 18d, 18g were prepared and tested as mixtures of
diastereomers with ratios of ꢀ5.6:1 favoring the R-isomer (determined by 1H
NMR); Compound 9a was prepared from the corresponding alcohol 8a, so the
ratio of the two diastereomes of 9a was estimated to be ꢀ1:5.6 favoring the S-
1. Medina, J.; Johnson, M. G.; Collins, T. L. Ann. Rep. Med. Chem. 2005, 40, 215.
2. Collins, T. L.; Johnson, M. G.; Medina, J. C.. In Chemokine Biology-Basic Research
and Clinical Application; Neote, K., Letts, G. L., Moser, B., Eds.; Birkhauser Verlag
Publishers: Berlin, 2007; Vol. 2, p 79.
3. (a) Goldberg, S. H.; van der Meer, P.; Hesselgesser, J.; Jaffer, S.; Kolson, D. L.;
Albright, A. V.; Golzalez- Scarano, F.; Lavi, E. Neuropathol. Appl. Neurobiol. 2001,
27, 127; (b) Szczucinski, A.; Losy, J. Acta Neurol. Scand. 2007, 115, 137.
4. (a) Tsubaki, T.; Takegawa, S.; Hanamoto, H.; Arita, N.; Kamogawa, J.;
Yamamoto, H.; Takubo, N.; Nakata, S. Clin. Exp. Immunol. 2005, 141, 363; (b)
Norii, M.; Yamamura, M.; Iwahashi, M.; Ueno, A.; Yamana, J.; Makino, H. Acta
Med. Okayama 2006, 60, 149.
isomer, assuming
a complete inversion of configuration in a simple SN2
reaction; Compounds 13a–17a were tested as mixtures of diastereomers with
ratios of ꢀ2.6:1, favoring the R-isomer. The individual diastereomers were not
isolated and characterized except for 18d and 18g (see Ref. 18).
18. (a) Chiral HPLC was employed to separate two diastereomers from each
mixture of camphor alcohols (conditions for separating 18e and 18f from 18d:
Agilent OA LC using Phenomenex Luna eluting with 50–90% CH3CN in H2O with
0.1% FTA; SFC conditions for separating 18h and 18i from 18g: 30 mm AD, 140
bar, 40 °C, 75 g/min CO2, 13 mL/min MeOH, UV @ 250 nm); (b) Stereochemistry
of 18e, 18f, 18h and 18i was assigned by Vibrational Circular Dichroism (VCD)
analysis.
5. Singh, U. P.; Venkataraman, C.; Singh, R.; Lillard, J. W. Endocrinol. Metab.
Immune Disord. Drug Targets 2007, 7, 111.
6. Bradding, P.; Walls, A. F.; Holgate, S. T. J. Allergy Clin. Immunol. 2006, 117, 1277.
7. Donnelly, L. E.; Barnes, P. J. Trends Pharmacol. Sci. 2006, 27, 546.
8. (a) Mazzinghi, B.; Netti, G. S.; Lazzeri, E.; Romagnani, P. G. Ital. Nefrol. 2007, 24,
212; (b) Hancock, W. W.; Lu, B.; Gao, W.; Csizmadia, V.; Faia, K.; King, J. A.;
Smiley, S. T.; Ling, M.; Gerard, N. P.; Gerard, C. J. Exp. Med. 2000, 192, 1515; (c)
Akashi, S.; Sho, M.; Kashikuza, K.; Hamada, K.; Ikeda, N.; Kuzumoto, Y.; Tsurui,
Y.; Nomi, T.; Mizuno, T.; Kanehiro, H.; Hisanaga, M.; Ko, S.; Nakajima, Y.
Transplantation 2005, 80, 378.
9. (a) Storelli, S.; Verdijk, P.; Verzijl, D.; Timmerman, H.; van de Stolpe, A. C.;
Tensen, C. P.; Smit, M. J.; De Esch, I. J. P.; Leurs, R. Bioorg. Med. Chem. Lett. 2005,
15, 2910; (b) Cole, A. G.; Stroke, I. L.; Brescia, M.-R.; Simhadri, S.; Zhang, J. J.;
Hussain, Z.; Snider, M.; Haskell, C.; Ribeiro, S.; Appell, K. C.; Henderson, I.;
Webb, M. L. Bioorg. Med. Chem. Lett. 2006, 16, 200; (c) Allen, D. R.; Bolt, A.;
Chapman, G. A.; Knight, R. L.; Meissner, J. W. G.; Owen, D. A.; Watson, R. J.
Bioorg. Med. Chem. Lett. 2007, 17, 697; (d) Johnson, M.; Li, A.-R.; Liu, J.; Fu, Z.;
Zhu, L.; Miao, S.; Wang, X.; Xu, Q.; Huang, A.; Matcus, A.; Xu, F.; Ebsworth, K.;
Sablan, E.; Danao, J.; Kumer, J.; Dairaghi, D.; Lawrence, C.; Sullivan, T.; Tonn, G.;
Schall, T.; Collins, T.; Medina, J. Bioorg. Med. Chem. Lett. 2007, 17, 3339; (e)
Watson, R. J.; Allen, D. R.; Birch, H. L.; Chapman, G. A.; Hannah, D. R.; Knight, R.
19. Concentration response curves of human IP-10 induced Ca2+ mobilization were
generated in the presence of a single 30 min pre-treated concentration of
antagonist, [B] (1 lM), or vehicle alone. The EC50, the concentration of human
IP-10 to elicit 50% of the maximal response induced by human IP-10 for a given
treatment condition, was calculated. A dose ratio (DR) was calculated as the
ratio of the EC50 for compound pre-treated human IP-10 curves over the EC50
for vehicle treated human IP-10 curves. pA2 serves as an empirical measure of
potency and is generated for a single concentration of antagonist using the
following formula: pA2 = log(DR-1) À log[B]. The FLIPR results are expressed as
a mean of two or more individual experiments.
20. Human U2OS cells transiently transduced with a mixture of recombinant
BacMan viruses expressing murine CXCR3 receptor and chimeric G-protein
Gqi5, respectively, were used in the studies. IC50 values of each compound
were determined by an inhibition dose-response curve. See, Ames, R. S.;
Fornwald, J. A.; Nuthulaganti, P.; Trill, J. J.; Foley, J. J.; Buckley, P. T.; Kost, T. A.;
Wu, Z.; Romanos, M. A. Receptors Channels 2004, 10, 99.