172
F.D. Sokolov et al. / Journal of Organometallic Chemistry 694 (2009) 167–172
L), 7.64–7.71 (m, 2H, m-C6H5, L) ppm. 31P{1H} NMR (CDCl3) ꢀ1.2 (s,
2P, PPh3), 54.9 (s, 1P, NPS) ppm. IR: 3320 (NH), 1530 (SCN), 976,
995, 1012, 1025 (POC), 606 (P@S) cmꢀ1. ES-MS (positive ion): m/
z (%) = 1248 (12) [Cu4L3]+, 854 (4) [Cu3L2]+, 588 (100) [Cu(PPh3)2]+.
Anal. Calc. for C49H50CuN2O2P3S2 (919.53): C, 64.00; H, 5.48; N,
3.05. Found: C, 63.87; H, 5.56; N, 3.10%.
charge from The Cambridge Crystallographic Data Centre via
the structural analyses with thermal parameters and complete ta-
bles of interatomic distances and angles. Supplementary data asso-
ciated with this article can be found, in the online version, at
3.5. Crystal structure determination and refinement
References
[1] (a) C.W. Liu, I.-J. Shang, R.-J. Fu, B.-J. Liaw, J.-C. Wang, I.-J. Chang, Inorg. Chem.
45 (2006) 2335;
The X-ray crystal structure determination was performed using
a Bruker AXS APEX CCD diffractometer equipped with a rotating
(b) Y.-J. Hsu, C.-M. Hung, Y.-F. Lin, B.-J. Liaw, T.S. Lobana, S.-Y. Lu, C.W. Liu,
Chem. Mater. 18 (2006) 3323;
(c) M. Afzaal, D.J. Crouch, P. O’Brien, J. Raftery, P.J. Skabara, A.J.P. White, D.J.
Williams, J. Mater. Chem. 14 (2004) 233;
anode and graphite-monochromated Mo K radiation. Data were
a
collected over the full sphere and were corrected for absorption
using the program SADABS [26]. The structures were solved by direct
methods and refined with full-matrix least-squares on F2 using
SHELXL-97 [27]. Hydrogen atoms were placed on idealized positions,
and refined with fixed isotropic displacement parameters using a
riding model.
(d) D.J. Birdsall, A.M.Z.J. Slawin, D. Woollins, Inorg. Chem. 38 (1999) 4152;
(e) C.W. Liu, J.T. Pitts, J.P. Fackler, Polyhedron 16 (1997) 3899.
[2] (a) H. Liu, N.A.G. Bandeira, M.J. Calhorda, M.G.B. Drew, V. Felix, J. Novosad, F.
Fabrizi de Biani, P. Zanello, J. Organomet. Chem. 689 (2004) 2808;
(b) S. Canales, O. Crespo, M. Concepcion Gimeno, P.G. Jones, A. Laguna, A.
Silvestru, C. Silvestru, Inorg. Chim. Acta 347 (2003) 16;
(c) W. Shi, M. Shafaei-Fallah, C.E. Anson, A. Rothenberger, Dalton Trans. (2006)
3257;
(d) M.C. Aragoni, M. Arca, M.B. Carrea, F. Demartin, F.A. Devillanova, A. Garau,
M.B. Hursthouse, S.L. Huth, F. Isaia, V. Lippolis, H.R. Ogilvie, G. Verani, Eur. J.
Inorg. Chem. (2006) 200.
4. Conclusions
The cyclic [Cu3L3] unit is rather common for copper(I) com-
plexes of N-phosphorylthioureas [8,9] and imidodiphosphinate li-
gands [1,2], but there are no examples of a further assembly
between such structure moieties. The structure found in the crystal
of the copper(I) complex 1 is the first example of such an
association.
Available data testify that the influence of substituents in the li-
gand on a structure of formed complexes should not be underesti-
mated. Even minor alteration of the ligand structure can have great
value. e.g. the example of the versalite coordination towards Ni(II)
and Pd(II) cations [28].
In this particular case we also have the new data to bear out this
thesis. As it was established recently, the formation of the com-
pletely different type of [CunLn] complexes in a crystal phase take
place depending on a structure of the assistant at R in fragment
RC(S)NHP(S)(OiPr)2 groups in the identical experimental
conditions. The formation of the trimeric (R = tBuNH [29]), tetranu-
clear (R = Me2N [29], Ph [30]) cyclic associates as well, as hexanu-
clear (R = NH2 [31]) and octanuclear (R = iPrNH [29]) polycyclic
associates has been found.
[3] (a) D. Rusanova, W. Forsling, O.N. Antzutkin, K.J. Pike, R. Dupree, J. Magn.
Reson. 179 (2006) 140;
(b) D. Rusanova, W. Forsling, O.N. Antzutkin, K.J. Pike, R. Dupree, Langmuir 21
(2005) 4420.
[4] D. Rusanova, K.J. Pike, I. Persson, R. Dupree, M. Lindberg, J.V. Hanna, O.N.
Antzutkin, W. Forsling, Polyhedron 25 (2006) 3569.
[5] (a) C.-M. Che, S.-W. Lai, Coord. Chem. Rev. 249 (2005) 1296;
(b) D.L. Phillips, C.-M. Che, K.H. Leung, Z. Mao, M.-C. Tse, Coord. Chem. Rev.
249 (2005) 1476.
[6] K. Saito, T. Arai, N. Takahashi, T. Tsukuda, T. Tsubomura, Dalton Trans. (2006)
4444.
[7] G. Henkel, B. Krebs, Chem. Rev. 104 (2004) 801.
[8] E. Herrmann, R. Richter, N.T.T. Chau, Z. Anorg. Allg. Chem. 623 (1997) 403.
[9] F.D. Sokolov, M.G. Babashkina, D.A. Safin, A.I. Rakhmatullin, F. Fayon, N.G.
Zabirov, M. Bolte, V.V. Brusko, J. Galezowska, H. Kozlowski, Dalton Trans.
(2007) 4693.
[10] M.L. Niven, P. Kyriacou, T.A. Modro, Dalton Trans. (1988) 1915.
[11] A.Y. Verat, F.D. Sokolov, N.G. Zabirov, M.G. Babashkina, D.B. Krivolapov, V.V.
Brusko, I.A. Litvinov, Inorg. Chim. Acta 359 (2006) 475.
[12] M.G. Zimin, R.M. Kamalov, R.A. Cherkasov, A.N. Pudovik, Phosphorus and
Sulfur 13 (1982) 371.
[13] F.D. Sokolov, V.V. Brusko, N.G. Zabirov, R.A. Cherkasov, Curr. Org. Chem. 10
(2006) 27.
[14] J.E. Huheey, E.A. Keiter, R.L. Keiter (Eds.), Inorganic Chemistry: Principles of
Structure and Reactivity, fourth ed., Harper Collins College Publishers, New
York, 1993.
[15] F.D. Sokolov, D.A. Safin, M.G. Babashkina, N.G. Zabirov, V.V. Brusko, N.A.
Mironov, D.B. Krivolapov, I.A. Litvinov, R.A. Cherkasov, B.N. Solomonov,
Polyhedron 26 (2007) 1550.
[16] D. Massiot, F. Fayon, M. Campron, I. King, S. Le Calve, B. Alonso, J.O. Durand, B.
Bujoli, Z. Gan, G. Hoatson, Magn. Reson. Chem. 40 (2002) 70.
[17] (a) G. Wu, R.E. Wasylishen, Organometallics 11 (1992) 3242;
(b) G. Wu, R.E. Wasylishen, Inorg. Chem. 31 (1992) 145.
[18] S.P. Brown, M. Perez-Torralba, D. Sanz, R.M. Claramunt, L. Emsley, Chem.
Commun. (2002) 1852.
[19] F. Fayon, I.J. King, R.K. Harris, R.K.B. Gover, J.S.O. Evans, D. Massiot, Chem.
Mater. 15 (2003) 2234.
[20] (a) F. Asaro, A. Camus, R. Gobetto, A.C. Olivieri, G. Pellizer, Solid State Nucl.
Magn. Reson. 8 (1997) 81;
The spontaneous ‘‘side-by-side” assembly of the two neutral
cyclic [Cu3L3] moieties could be caused by the comparatively lower
steric demand of the PhNH-group in comparision with complexes
of N-phosphorylthioureas with branched substituents [8–10] and
tetraorganoimidodiphosphinate ligands [1,2]. The literature data
are too scared for a reliable comparison, but at the moment we
could presume that decreasing of the steric value of the substitu-
ents R and R0 at the RC(S)NHP(S)R02 backbone leads to an increase
of the size of the polynuclear aggregate formed. A contribution of
weak H-bond intermolecular interactions between [Cu3L3] with
participation of the PhNH-groups could be named as an other pos-
sible reason of the further association.
(b) J.V. Hanna, R.D. Hart, P.C. Healy, B.W. Skelton, A.H. White, J. Chem. Soc.,
Dalton Trans. (1998) 2321.
[21] E.M. Menger, W.S. Veeman, J. Magn. Reson. 46 (1982) 257.
[22] A. Olivieri, J. Am. Chem. Soc. 114 (1992) 5758.
[23] R.K. Harris, A. Olivieri, Prog. Nucl. Magn. Reson. Spectrosc. 24 (1992) 435.
[24] G. Metz, X.L. Wu, S.O. Smith, J. Magn. Reson. Ser. A 110 (1994) 219.
[25] B.M. Fung, A.K. Khitrin, K. Ermolaev, J. Magn. Reson. 142 (2000) 97.
[26] R.H. Blessing, Acta Crystallogr., Sect. A 51 (1995) 33.
[27] G.M. Sheldrick, SHELXL-97; Universität Göttingen, Germany, 1997.
[28] F.D. Sokolov, S.V. Baranov, D.A. Safin, F.E. Hahn, M. Kubiak, T. Pape, M.G.
Babashkina, N.G. Zabirov, J. Galezowska, H. Kozlowski, R.A. Cherkasov, New J.
Chem. 31 (2007) 1661.
Acknowledgments
This work was supported by the joint program of CRDF and the
Russian Ministry of Education and Science (BRHE 2008 Y5-C-07-
09); Russian Science Support Foundation.
[29] M.G. Babashkina, R.C. Luckay, D.A. Safin, A. Klein, A.A. Kostin, M. Bolte, T. Pape,
F.D. Sokolov, F.E. Hahn, in preparation.
[30] F.D. Sokolov, M.G. Babashkina, D.A. Safin, D.B. Krivolapov, I.A. Litvionov, in
preparation.
[31] R.C. Luckay, X. Sheng, C.E. Strasser, H.G. Raubenheimer, D.A. Safin, F.D. Sokolov,
M.G. Babashkina, Chem. Comm., submitted for publication.
Appendix A. Supplementary material
CCDC 652056 and 652057 contains the supplementary crystal-
lographic data for this paper. These data can be obtained free of