L. G. Czaplewski et al. / Bioorg. Med. Chem. Lett. 19 (2009) 524–527
527
Table 5
Table 7
Potency of compounds 1, 32 and 35 against wild-type S. aureus ATCC 601055 and
Antibacterial efficiency of selected compounds
strains with spontaneous FtsZ point mutations M218I and P300R
Compound
Mol
wt
Number of
non-hydrogen MIC
atoms
S. aureus
Antibacterial efficiency
Compound
MIC (l
g mlꢀ1
)
(mgꢀm1 lꢀ1 Nnon-hydrogen
(Da)a
(
l
g mlꢀ1
)
)
atom
S. aureus
FtsZ
FtsZ
ATCC 601055
M218I
P300R
1
12
23
26
29
30
31
32
33
34
35
39
151
165
169
187
179
193
207
221
235
249
263
281
299
331
11
12
12
13
13
14
15
16
17
18
19
20
21
24
20
24
35
37
2048
1024
512
512
256
128
32
16
8
4
2
0.5
0.5
0.5
4.0
2.0
0.12
0.06
ꢀ0.065
ꢀ0.002
0.056
0.051
0.105
0.147
0.229
0.258
0.284
0.307
0.327
0.380
0.362
0.317
0.276
0.258
0.257
0.261
1
32
35
4000
32
>8000
>128
>128
>8000
>128
>128
2
Table 6
Potency of compounds 1 and 32 against isolates of S. aureus and S. epidermidis
Strain
MIC (l )
g mlꢀ1
Compound 1
Compound 32
41
S. aureus ATCC 601055 (MSSA)
S. aureus ATCC 607004 (MRSA)
S. aureus ATCC 700698 (MRSA)
S. aureus ATCC 25923 (MSSA)
S. aureus ATCC 29213 (MRSA)
S. aureus ATCC 43300 (MRSA)
S. aureus ATCC 19636 (MSSA)
S. epidermidis ATCC 12228
4096
4096
4096
4096
2048
4096
2048
4096
32
32
32
16
16
16
16
32
Ciprofloxacin
Chloramphenicol 323
Linezolid
Mupirocin
Fusidic acid
337
500
516
a
Rounded to nearest whole Da.
with the SAR of this alkyloxybenzamide series of FtsZ inhibitors.14
The series did not convincingly dock into the GTPase site of FtsZ
but did dock into an adjacent cleft. The SAR of the series correlates
well with the model, which predicts an optimal hydrophobic alkyl
substituent equivalent in length to 9–10 carbons with little space
for substitutions off the benzamide group. This is in agreement
with our experimental findings (Tables 2 and 3).
Acknowledgments
We thank various colleagues including Mike Marriott, Geoff
Lawton, Ian Skidmore, Jeff Errington and Steve Ruston for assis-
tance, advice and support. This work was funded by investments
from East Hill Management (Boston, USA), a LINK grant in Applied
Genomics (AppGen55) from the UK Biotechnology and Biological
Sciences Research Council and the UK Department of Trade and
Industry. Compounds are the subject of patent application PCT/
GB2007/001012. The Prolysis authors declare financial interests.
The concept and use of ligand efficiency15 provides a means of
normalizing the potency and molecular weight of a compound to
enable useful comparison of compounds within a series. Due to dif-
ficulties associated with biochemical analysis of FtsZ we have not
been able to measure the ligand efficiencies of these compounds
directly. Instead we propose to use antibacterial efficiency to pro-
vide a means to do this. We define antibacterial efficiency in Eq. 1,
as a logarithmic function of the MIC in mg mlꢀ1 per non-hydrogen
atom (Table 7). This metric describes the ability of the compound
to penetrate the cell and to interact with its target to kill the cell
as a function of molecular weight.
References and notes
1. Vollmer, W. Appl. Microbiol. Biotechnol. 2006, 73, 37.
2. Lock, R. L.; Harry, E. J. Nat. Rev. Drug Disc. 2008, 7, 324.
3. Errington, J.; Daniel, R. A.; Scheffers, D.-J. Microbiol. Mol. Biol. Rev. 2003, 67,
52.
4. Löwe, J.; Amos, L. A. Nature 1998, 391, 203.
5. Nogales, E.; Wolf, S. G.; Downing, K. H. Nature 1998, 391, 199.
6. Downing, K. H. Annu. Rev. Cell Dev. Biol. 2000, 16, 89.
7. Ohashi, Y.; Chijiiwa, Y.; Suzuki, K.; Takahashi, K.; Nanamiya, H.; Sato, T.;
Hosoya, Y.; Ochi, K.; Kawamura, F. J. Bacteriol. 1999, 181, 1348.
8. Wang, J.; Galgoci, A.; Kodali, S.; Herath, K. B.; Jayasuriya, H.; Dorso, K.; Vicente,
F.; González, A.; Cully, D.; Bramhill, D.; Singh, S. J. J. Biol. Chem. 2003, 278,
44424.
9. Margalit, D. N.; Romberg, L.; Mets, R. B.; Hebert, A. M.; Mitchison, T. J.;
Kirschner, M. W.; RayChaudhuri, D. Proc. Natl. Acad. Sci. U.S.A. 2004, 101,
11821.
10. Läppchen, T.; Hartog, A. F.; Pinas, V. A.; Koomen, G.-J.; den Blaauwen, T.
Biochemistry 2005, 44, 7879.
11. Stokes, N. R.; Sievers, J.; Barker, S.; Bennett, J. M.; Brown, D. R.; Collins, I.;
Errington, V. M.; Foulger, D.; Hall, M.; Halsey, R.; Johnson, H.; Rose, V.;
Thomaides, H. B.; Haydon, D. J.; Czaplewski, L. G.; Errington, J. J. Biol. Chem.
2005, 39709.
12. Ito, H.; Ura, A.; Oyamada, Y.; Tanitame, A.; Yoshida, H.; Yamada, S.; Wachi, M.;
Yamagishi, J. H. Microbiol. Immunol. 2006, 50, 759.
13. Paradis-Bleau, C.; Beaumont, M.; Sanschagrin, F.; Voyer, N.; Levesque, R. C.
Bioorg. Med. Chem. 2007, 15, 1330.
14. Haydon, D. J.; Stokes, N. R.; Ure, R.; Galbraith, G.; Bennett, J. M.; Brown, D. R.;
Baker, P. J.; Barynin, V. V.; Rice, D. W.; Sedelnikova, S. E.; Heal, J. R.; Sheridan, J.
M.; Aiwale, S. T.; Chauhan, P. K.; Srivastava, A.; Taneja, A.; Collins, I.; Errington,
J.; Czaplewski, L. G. Science 2008, 321, 1673.
15. Hopkins, A. L.; Groom, C. R.; Alex, A. Drug Discovery Today 2004, 9, 430.
16. Purnell, M. R.; Whish, W. J. D. Biochem. J. 1980, 185, 775.
17. Griffin, R. J.; Calvert, A. H.; Curtin, N. J.; Newell, D. R.; Golding, B. T.; Bernard, T.
U.S. Patent 5,756,510, 1998.
Antibacterial efficiency ¼ ꢀ ln MICðmg mlꢀ1 =Nnon-hydrogen atoms
ð1Þ
Þ
The antibacterial efficiencies of clinically approved lower
molecular weight compounds as opposed to higher molecular
weight natural products, are in the 0.25 to 0.32 mg mlꢀ1 per non-
hydrogen atom range (Table 7). Compound 1 was much less effi-
cient at ꢀ0.065 but extension of the alkoxy substitution signifi-
cantly improved antibacterial efficiency to >0.3, comparable with
marketed drugs. The fluorinated benzamide analogues demon-
strated an improvement in antibacterial efficiency compared to
non-fluorinated compounds.
Antibacterial efficiency may be a useful tool to direct fragment-
based antibacterial optimization. It reduces reliance on the MIC
and enables decision making to focus on the efficiency of the li-
gand. This may lead to lower molecular weight Leads and Drug
Candidates.
Our exploration of 3-MBA (1) SAR has led to the identification of
potent inhibitors of FtsZ that could form the basis of a new tar-
geted treatment for staphylococcal infection. Further exploration
and optimization of the compound series, particularly with regard
to replacing the long alkyl substituent with more drug-like alterna-
tives, while retaining antibacterial efficiency, is ongoing and will be
reported in due course.
18. Perrone, R.; Berardi, F.; Colabufo, N. A.; Leopoldo, M.; Tortorella, V. Med. Chem.
1998, 41, 4903.
19. Pinho, M. G.; Errington J. Mol. Microbiol. 2003, 50, 871.