1390
E. Ayral et al. / Bioorg. Med. Chem. Lett. 19 (2009) 1386–1391
80 °C. An inverse pathway was followed for the preparation of
compounds 79–90. Compounds 54, 55, 58–61, 66–68, and 71–73,
were first deprotected and reacted with benzylsulfonyl chloride
before coupling with BA-Z. The Z protecting group was finally re-
moved with a 33% HBr/AcOH solution. In the case of 90, the ethyl-
enic group (originating from intermediate 66) was reduced by
catalytic hydrogenation30 with simultaneous Z removal.
Table 2 shows the inhibitory potencies of compounds 79–93
against FVIIa/TF and, for those with IC50 below 5 lM, FXa and
thrombin. Compared to 20, no significant improvement in potency
against FVIIa was obtained, the best compounds (79, 81, 83, 85, 87,
89, 90) possessing similar IC50 values. A closer examination re-
5S. Figure 1S. In vitro Factor VIIa/TF, Factor Xa, Thrombin assay
methods. Molecular modelling description. Supplementary data
associated with this article can be found, in the online version, at
References and notes
1. (a) Mackman, N. Nature 2008, 451, 914; (b) Golino, P.; Loffredo, F.; Riegler, L.;
Renzullo, E.; Cocchia, R. Curr. Opin. Invest. Drugs 2005, 6, 298.
2. (a) Nutescu, E. A.; Shapiro, N. L.; Chevalier, A. Cardiol. Clin. 2008, 26, 169; (b)
Prezelj, A.; Stefanic, P.; Peternel, L.; Urleb, U. Curr. Pharm. Des. 2007, 13, 287; (c)
Turpie, A. G. G. Arterioscler. Thromb. Vasc. Biol. 2007, 27, 1238.
3. Eriksson, B. I.; Smith, H.; Yasothan, U.; Kirkpatrick, P. Nat. Rev. Drug Discov.
2008, 7, 557.
vealed that substitution of D-BT at position 8 caused steric hin-
4. Gulseth, M. P.; Michaud, J.; Nutescu, E. A. Am. J. Health Syst. Pharm. 2008, 65,
1520.
5. (a) Shirk, R. A.; Vlasuk, G. P. Arterioscler. Thromb. Vasc. Biol. 2007, 27, 1895; (b)
Lazarus, R. A.; Olivero, A. G.; Eigenbrot, C.; Kirchhofer, D. Curr. Med. Chem. 2004,
11, 2275.
drance as it was generally less well tolerated by FVIIa/TF
compared to 7-substitution, in particular when the substituent
contained a carboxylic group (80 vs 79, 84 vs 83, 88 vs 87, 5 to
10 times less active). No satisfying explanation of this behaviour
was obtained by modelling studies. A similar result was obtained
with a phenyl ring at position 7, which led to a three to five times
drop in potency. Interestingly, as far as thrombin inhibition was
6. A selection. (a) Young, W. B.; Kolesnikov, A.; Rai, R.; Sprengeler, P. A.; Leahy, E.
M.; Shrader, W. D.; Sangalang, J.; Burgess-Henry, J.; Spencer, J.; Elrod, K.;
Cregar, L. Bioorg. Med. Chem. Lett. 2001, 11, 2253; (b) Hanessian, S.; Therrien, E.;
Granberg, K.; Nilsson, I. Bioorg. Med. Chem. Lett. 2002, 12, 2907; (c) Parlow, J. J.;
Case, B. L.; Dice, T. A.; Fenton, R. L.; Hayes, M. J.; Jones, D. E.; Neumann, W. L.;
Wood, R. S.; Lachance, R. M.; Girard, T. J.; Nicholson, N. S.; Clare, M.; Stegeman,
R. A.; Stevens, A. M.; Stallings, W. C.; Kurumbail, R. G.; South, M. S. J. Med. Chem.
2003, 46, 4050; (d) Klinger, O.; Matter, H.; Schudok, M.; Donghi, M.; Czech, J.;
Lorenz, M.; Nestler, H. P.; Szillat, H.; Schreuder, H. Bioorg. Med. Chem. Lett. 2004,
14, 3715; (e) Sagi, K.; Fujita, K.; Sugiki, M.; Takahashi, M.; Takehana, S.; Tashiro,
K.; Kayahara, T.; Yamanashi, M.; Fukuda, Y.; Oono, S.; Okajima, A.; Iwata, S.;
Shoji, M.; Sakurai, K. Bioorg. Med. Chem. 2005, 13, 1487; (f) Zbinden, K. G.;
Banner, D. W.; Ackermann, J.; D’Arcy, A.; Kirchhofer, D.; Ji, Y.-H.; Tschopp, T. B.;
Wallbaum, S.; Weber, L. Bioorg. Med. Chem. Lett. 2005, 15, 817; (g) Kohrt, J. T.;
Filipski, K. J.; Cody, W. L.; Cai, C.; Dudley, D. A.; Van Huis, C. A.; Willardsen, J. A.;
Narasimhan, L. S.; Zhang, E.; Rapundalo, S. T.; Saiya-Cork, K.; Leadley, R. J.;
Edmunds, J. J. Bioorg. Med. Chem. Lett. 2006, 16, 1060; (h) Young, W. B.;
Mordenti, J.; Torkelson, S.; Shrader, W. D.; Kolesnikov, A.; Rai, R.; Liu, L.; Hu, H.;
Leahy, E. M.; Green, M. J.; Sprengeler, P. A.; Katz, B. A.; Yu, C.; Janc, J. W.; Elrod,
K. C.; Marzec, U. M.; Hanson, S. R. Bioorg. Med. Chem. Lett. 2006, 16, 2037; (i) Rai,
R.; Kolesnikov, A.; Sprengeler, P. A.; Torkelson, S.; Ton, T.; Katz, B. A.; Yu, C.;
Hendrix, J.; Shrader, W. D.; Stephens, R.; Cabuslay, R.; Sanford, E.; Young, W. B.
Bioorg. Med. Chem. Lett. 2006, 16, 2270; (j) Miura, M.; Seki, N.; Koike, T.;
Ishihara, T.; Niimi, T.; Hirayama, F.; Shigenaga, T.; Sakai-Moritani, Y.; Sakamoto,
T.; Kawasaki, S.; Okada, M.; Ohta, M.; Tsukamoto, S.-i. Bioorg. Med. Chem. 2006,
14, 7688; (k) Krishnan, R.; Kotian, P. L.; Chand, P.; Bantia, S.; Rowland, S.; Babu,
Y. S. Acta Crystallogr. D Biol. Crystallogr. 2007, 63, 689; (l) Shiraishi, T.; Kadono,
S.; Haramura, M.; Kodama, H.; Ono, Y.; Iikura, H.; Esaki, T.; Koga, T.; Hattori, K.;
Watanabe, Y.; Sakamoto, A.; Yoshihashi, K.; Kitazawa, T.; Esaki, K.; Ohta, M.;
Sato, H.; Kozono, T. Bioorg. Med. Chem. Lett. 2008, 18, 4533.
concerned, we found that substitution of D-BT at position 7 or 8
led to a significant decrease in inhibitory potency (about 100 times
for compounds 83, 87, 90), especially when the substituent con-
tained a carboxylic function. This resulted in a significant selectiv-
ity for factor VIIa/TF against thrombin, with a ratio of around 20 for
the amino acid-containing compound 90. Compounds 20 and 83
were modelled in the active site of thrombin (PDB code, 1DWD).
Compound 20 occupied the same region as in Factor VIIa with
the BT moiety present in the S2–S3 area, making H-bonds with
Gly216 backbone. In particular, the aromatic part of BT bound in
S2 and interacted with Tyr60A and Trp60D, while the benzylsulfo-
nyl phenyl ring was staking with Arg221A side-chain. The acetic
group in compound 83 made contact with Trp60D, resulting in
the absence of interaction of the benzylsulfonyl phenyl ring with
thrombin and in its staking with the BT moiety. This could explain
the lower inhibitory potency of these compounds against throm-
bin. However, no selectivity against FXa was obtained, as all tested
compounds (20, 81–83, 85–87, 89, 90, 92, 93) showed IC50 in the
micromolar range, generally with small variations whatever the
substitution. However, compound 83 possessing an acetic group
7. Bariwal, J. B.; Upadhyay, K. D.; Manvar, A. T.; Trivedi, J. C.; Singh, J. S.; Jain, K. S.;
Shah, A. K. Eur. J. Med. Chem. 2008, 43, 2279.
8. Nagao, T.; Sato, M.; Nakajima, H.; Kiyomoto, A. Chem. Pharm. Bull. 1973, 21, 92.
9. Budriesi, R.; Cosimelli, B.; Ioan, P.; Carosati, E.; Ugenti, M. P.; Spisani, R. Curr.
Med. Chem. 2007, 14, 279.
10. Amblard, M.; Daffix, I.; Bedos, P.; Bergé, G.; Pruneau, D.; Paquet, J.-L.; Luccarini,
J.-M.; Bélichard, P.; Dodey, P.; Martinez, J. J. Med. Chem. 1999, 42, 4185.
11. Nagel, A. A. WO 9401421, 1994.
at position 7 of
D-BT presented a 15 times improvement in inhibi-
tory potency against FXa (IC50 = 0.21
l
M) compared to the unsub-
stituted analogue 20, rather making it a relatively selective
inhibitor of FXa (IC50’s ratios FVIIa/FXa = 14; FIIa/FXa = 150).
In conclusion, several series of 1,5-benzothiazepine-4-one con-
taining compounds were prepared as potential FVIIa/TF complex
inhibitors. The best compounds presented micromolar IC50 against
12. Buhlmayer, P.; Furet, P. WO 9413651, 1994.
13. Huang, P.; Loew, G. H.; Funamizu, H.; Mimura, M.; Ishiyama, N.; Hayashida, M.;
Okuno, T.; Shimada, O.; Okuyama, A.; Ikegami, S.; Nakano, J.; Inoguchi, K. J.
Med. Chem. 2001, 44, 4082.
this coagulation factor. Derivatization of the D-BT moiety at posi-
14. Skiles, J. W.; Sorcek, R.; Jacober, S.; Miao, C.; Mui, P. W.; McNeil, D.; Rosenthal,
A. S. Bioorg. Med. Chem. Lett. 1993, 3, 773.
15. Das, J.; Robl, J. A.; Reid, J. A.; Sun, C.-Q.; Misra, R. N.; Brown, B. R.; Ryono, D. E.;
Asaad, M. M.; Bird, J. E.; Trippodo, N. C.; Petrillo, E. W.; Karanewsky, D. S. Bioorg.
Med. Chem. Lett. 1994, 4, 2193.
16. Slade, J.; Stanton, J. L.; Ben-David, D.; Mazzenga, G. C. J. Med. Chem. 1985, 28,
1517.
17. Itoh, K.; Kori, M.; Inada, Y.; Nishikawa, K.; Kawamatsu, Y.; Sugihara, H. Chem.
Pharm. Bull. 1986, 34, 1128.
tions 7 or 8 did not allow to improve significantly the potency
compared to unsubstituted 20. However, some structural features
allowing to acquire significant selectivity against thrombin in these
series were obtained. As other structural classes with high potency
and high selectivity were reported, further studies are necessary to
improve inhibitory potency and selectivity in this D-BT series.
18. Olivier, C.; Amblard, M.; Bergé, G.; Dodey, P.; Martinez, J. In Peptides 2000,
Proceedings of the 26th European Peptide Symposium, 2001; pp 705–706.
19. Amblard, M.; Raynal, N.; Averlant-Petit, M.-C.; Didierjean, C.; Calmès, M.;
Fabre, O.; Aubry, A.; Marraud, M.; Martinez, J. Tetrahedron Lett. 2005, 46,
3733.
20. Riggs, J. R.; Kolesnikov, A.; Hendrix, J.; Young, W. B.; Shrader, W. D.;
Vijaykumar, D.; Stephens, R.; Liu, L.; Pan, L.; Mordenti, J.; Green, M. J.;
Sukbuntherng, J. Bioorg. Med. Chem. Lett. 2006, 16, 2224.
Acknowledgments
We thank Pierre Sanchez for mass spectrometry analyses and
Nicolas Floquet for helpful discussions. We also acknowledge the
analytical division of IdRS for performing the spectral analyses.
21. Reeh, C.; Wundt, J.; Clement, B. J. Med. Chem. 2007, 50, 6730.
22. Sanderson, P. E.; Cutrona, K. J.; Dorsey, B. D.; Dyer, D. L.; McDonough, C. M.;
Naylor-Olsen, A. M.; Chen, I. W.; Chen, Z.; Cook, J. J.; Gardell, S. J.; Krueger, J.
A.; Lewis, S. D.; Lin, J. H.; Lucas, B. J., Jr.; Lyle, E. A.; Lynch, J. J., Jr.; Stranieri,
M. T.; Vastag, K.; Shafer, J. A.; Vacca, J. P. Bioorg. Med. Chem. Lett. 1998, 8,
817.
Supplementary data
Synthetic procedures and analysis data for compounds 45-78.
Structural analysis data for compounds 20, 79-93. Schemes 1S to