772
S. Thulasi et al. / Tetrahedron Letters 50 (2009) 770–772
4. (a) Aleksiuk, O.; Grynszpan, F.; Biali, S. E. J. Org. Chem. 1993, 58, 1994; (b)
OMe
OH
HO
OH
OH
Aleksiuk, O.; Cohen, S.; Biali, S. E. J. Am. Chem. Soc. 1995, 117, 9645.
5. Van Gelder, J. M.; Brenn, J.; Thondorf, I.; Biali, S. E. J. Org. Chem. 1997, 62, 3511.
6. (a) Agbaria, K.; Wohnert, J.; Biali, S. E. J. Org. Chem. 2001, 66, 7059; For a review
on spirodienone calixarene derivatives, see: (b) Biali, S. E. Synlett 2003, 1.
7. Arduini, A.; Pochini, A.; Sicuri, A. R.; Secchi, A.; Ungaro, R. Gazz. Chim. Ital. 1994,
124, 129.
BBr3, DCM
0 ˚C - rt, 2 h
OH
OH
HO
OH
But
But
But
But
OH
8. (a) Verboom, W.; Durie, A.; Egberink, R. J. M.; Asfari, Z.; Reinhoudt, D. N. J. Org.
Chem. 1992, 57, 1313; (b) Kelderman, E.; Derhaeg, L.; Heesnik, G. J. T.; Verboom,
W.; Engbersen, J. F. J.; van Hulst, N. F.; Persoons, A.; Reinhoudt, D. N. Angew.
Chem., Int. Ed. Engl. 1992, 31, 1057.
But
4a
But
7 (75%)
9. Casnati, A.; Ting, Y.; Berti, D.; Fabbi, M.; Pochini, A.; Ungaro, R.; Sciotto, D.;
Lombardo, G. G. Tetrahedron 1993, 49, 9815.
Scheme 3. Reaction of 4a with BBr3.
10. Almi, M.; Arduini, A.; Casnati, A.; Pochini, A.; Ungaro, R. Tetrahedron 1989, 45,
2177.
11. (a) Shinkai, S.; Nagasaki, T.; Iwamoto, K.; Ikeda, A.; Matsuda, T.; Iwamoto, M.
Bull. Chem. Soc. Jpn. 1991, 64, 381; (b) Conner, M.; Janout, V.; Regen, S. L. J. Org.
Chem. 1992, 57, 3744.
32% and 45% yields, respectively. Considering the cost effectiveness
and ease of handling of the various catalysts used, 5 equiv of p-TSA
in toluene was selected as the optimal acid concentration for upper
rim modifications.
12. Arduini, A.; Manfredi, G.; Pochini, A.; Sicuri, A. R.; Ungaro, R. J. Chem. Soc., Chem.
Commun. 1991, 936.
13. Atwood, J. L.; Bott, S. G. Water Soluble Calixarene Salts. A Class of Compounds with
Solid State Structures Resembling Those of Clays, in Ref. 2, p 199.
14. Coquiere, D.; Cadeau, H.; Rondelez, Y.; Giorgi, M.; Reinaud, O. J. Org. Chem.
2006, 71, 4059.
15. Redon, S.; Li, Y.; Reinaud, O. J. Org. Chem. 2003, 68, 7004.
16. Arora, V.; Chawla, H. M.; Santra, A. Tetrahedron 2002, 58, 5591.
17. (a) Morita, Y.; Agawa, T. J. Org. Chem. 1992, 57, 3659; (b) Mascal, M.; Naven, R.
T.; Warmuth, R. Tetrahedron Lett. 1995, 36, 9361; (c) Arduini, A.; Mirone, L.;
Peganuzzi, D.; Pinalli, A.; Pochini, A.; Secchi, A.; Ungaro, R. Tetrahedron 1996,
52, 6011.
With the optimal conditions in hand, we next examined the
reactivities of a variety of primary alcohols towards bis(spirodie-
nones). The reaction was found to be general with both saturated
and unsaturated alcohols yielding monosubstituted products 4
and 6 in all the cases investigated except for entries 1 and 6. Unsat-
urated alcohols (entries 6–8) were found to react faster and the
reactions were complete within 10 min (Table 2).
The reaction of 4a with BBr3 in dichloromethane at 0 °C afforded
5-hydroxycalix[4]arene 7 in 75% yield (Scheme 3).20 Although
there has been a report on the synthesis of detertiarybutylated 5-
hydroxy calix[4]arene,21 to the best of our knowledge, this is the
first synthesis of 7,11,23-tri-p-tert-butylcalix[4]arene with a hy-
droxyl group on the upper rim.
In conclusion, a direct and efficient acid-mediated protocol for
the upper rim ipso-alkoxy substitution of calix[4]arene via bis(spi-
rodienone) 1 has been described in this letter. The transformation
is distinguished by mild reaction conditions, experimental simplic-
ity and considerable generality. Studies to transform the upper
rim-substituted products to highly functionalized macrocycles
are underway and a detailed study of the reactivity of bis(spirodie-
nones) with nucleophiles such as amines and thiols is in progress.
18. Typical experimental procedure:
A mixture of bis(spirodienone) 1 (50 mg,
0.08 mmol), methanol (4 equiv) and p-TSA (60 mol %) in toluene was stirred
at reflux (110 °C). Refluxing was continued until the reaction was complete
as shown by TLC (ꢀ12 h). The solvent was removed under reduced pressure.
The reaction mixture was worked-up using dichloromethane–water mixture
and the solid mass obtained was purified by column chromatography. With
unsaturated alcohols, the reaction was complete within 10 min as indicated
by thin layer chromatography. Spectral characterization of products 4a:
Yield: 32% as a white solid. Rf: 0.90, mp: Decomposed >240 °C. IR (KBr) mmax
:
d
3173, 2960, 2858, 1800, 1259, 1053 cmÀ1 1H NMR (300 MHz, CDCl3):
.
10.20 (s, OH, 4H), 7.02 (m, ArH, 6H), 6.55 (s, ArH, 2H), 4.24 (d, J = 12.0 Hz,
ArCH2Ar, 4H), 3.64 (s, OMe, 3H), 3.46 (br s, ArCH2Ar, 4H), 1.22 (s, t-Bu, 18H),
1.19 (s, t-Bu, 9H). 13C NMR (75 MHz, CDCl3): d 153.9 (C–OH), 146.9, 146.3,
144.4, 144.3, 142.6, 129.4, 127.9, 127.7, 127.3, 126.0, 125.9, 125.6, 113.9
(Ar–C), 55.3 (O–CH3), 34.1, 32.6, 31.6, 31.5, 29.8 (ArCH2Ar, –OCH3, t-Bu). MS
(FAB): calcd for C41H50O5, M+: 622.37; found: 622.85. Compound 5a: Yield:
45% as a white solid. Rf: 0.83. Mp: Decomposed >240 °C. IR (KBr)
mmax: 3173,
2963, 1259, 1051 cmÀ1 1H NMR (300 MHz, CDCl3): d 10.04 (s, OH, 4H), 7.04
.
(s, ArH, 4H), 6.52 (s, ArH, 4H), 4.23 (d, J = 13.2 Hz, ArCH2Ar, 4H,), 3.62 (s,
OMe, 6H), 3.43 (d, J = 14.7 Hz, ArCH2Ar, 4H,), 1.24 (s, t-Bu, 18H). 13C NMR
(125 MHz, CDCl3): d 154.0, 147.1, 144.7, 144.4, 142.2, 132.4, 130.8, 129.8,
129.2, 128.8, 128.3, 128.1, 127.3, 125.7, 113.9, 55.9, 55.2 (–OCH3), 34.0, 32.4,
31.5, 30.6, 29.7, 27.7, 21.6, 19.2. MS (FAB): calcd for C38H44O6, M+: 596.31;
found: 596.23. Compound 6: Yield: 15% as a brown semi-solid. Rf: 0.30. 1H
NMR (300 MHz, CDCl3): d 10.25 (s, OH, 4H), 7.70 (d, J = 8.3 Hz, ArH tolyl,
2H), 7.32 (m, ArH tolyl, 2H), 7.05 (m, ArH, 4H), 6.91 (s, ArH, 2H), 6.68 (m,
ArH, 2H), 4.20 (br s, ArCH2Ar, 4H), 3.44 (br s, ArCH2Ar, 4H), 2.46 (s, CH3,
3H), 1.20 (s, t-Bu, 18H), 1.19 (s, t-Bu, 9H). 13C NMR (125 MHz, CDCl3): d
149.7, 148.2, 146.8, 146.2, 144.5, 142.7, 134.2, 129.6, 127.9, 127.6, 127.5,
127.1, 126.1, 125.9, 125.6, 123.3, 115.5, 56.0, 34.4, 34.0, 32.5, 32.3, 31.9,
31.5, 31.3, 31.1, 30.7, 29.7, 29.4, 26.9, 22.7, 14.1. MS (FAB): calcd for
C47H54O7S, M+: 762.36; found: 762.77.
Acknowledgements
The authors thank the Council of Scientific and Industrial Re-
search, (NWP 0023), University Grants Commission (UGC) and
the Department of Science and Technology (DST), New Delhi for
financial assistance. We thank Dr. G. Vijay Nair for his valuable
suggestions. Thanks are also due to Ms. Saumini Mathew and Ms.
S. Viji for NMR and mass spectral data.
Supplementary data
19. Jaime, C.; de Mendoza, J.; Prados, P.; Neito, P. M.; Sanchez, C. J. Org. Chem. 1991,
56, 3372.
Supplementary data associated with this article can be found, in
20. Procedure for the synthesis of 5-hydroxycalix[4]arene (7): 7,11,23-Tri-tert-butyl-
5-methoxycalix[4]arene, 4a (50 mg, 0.08 mmol) was dissolved in 10 mL of dry
dichloromethane and cooled in an ice-salt mixture. BBr3 (30 mg, 0.12 mmol)
was added over a period of 0.5 h and the reaction mixture was allowed to stir
under argon for 3 h (0 °C). The extent of reaction was tested by TLC. The
reaction mixture was worked-up using dichloromethane–water mixture and
the product was obtained using column chromatography [petroleum ether–
ethyl acetate (90:10)] as a colourless semi solid 7 (36 mg, 75%). Rf: 0.65. IR
References and notes
1. For reviews on calixarenes see: (a) Gutsche, C. D. Calixarenes; Royal Society of
Chemistry: Cambridge, 1989; (b) Böhmer, V. Angew. Chem., Int. Ed. Engl. 1995,
34, 713; (c) Gutsche, C. D. Calixarenes Revisited; Royal Society of Chemistry:
Cambridge, 1998; (d)Calixarenes 2001; Asfari, Z., Böhmer, V., Harrowfield, J.,
Vicens, J., Eds.; Kluwer Academic: Dordrecht, 2001.
(KBr) m .
max: 3173, 2960, 2858, 1786, 1060 cmÀ1 1H NMR (300 MHz, CDCl3): d
10.20 (s, OH, 4H), 7.04 (m, ArH, 6H), 6.53 (s, ArH, 2H), 4.10 (br s, ArCH2Ar, 4H),
3.32 (br s, ArCH2Ar, 4H), 1.22 (s, t-Bu, 18H), 1.19 (s, t-Bu, 9H), one of the OH
protons could not be detected. 13C NMR (75 MHz, CDCl3): 153.9 (C–OH), 146.9,
146.3, 144.4, 144.3, 142.6, 129.4, 127.9, 127.7, 127.3, 126.0, 125.9, 125.6, 113.9
(Ar–C), 34.1, 32.6, 31.6, 31.5, 29.8 (ArCH2Ar, t-Bu). MS (FAB): calcd for
C40H48O5, [M+1]+: 609.81; found: 609.92.
2. Litwak, A. M.; Biali, S. E. J. Org. Chem. 1992, 57, 1945.
3. (a) Görmar, G.; Seiffarth, K.; Schultz, M.; Zimmerman, J.; Flamig, G.
Macromol. Chem. 1990, 191, 81; (b) Middel, O.; Greff, Z.; Taylor, N. J.;
Verboom, W.; Reinhoudt, D. N.; Snieckus, V. J. Org. Chem. 2000, 65, 667; (c)
Agbaria, K.; Biali, S. E. J. Am. Chem. Soc. 2001, 123, 12495; (d) Simaan, S.;
Agbaria, K.; Biali, S. E. J. Org. Chem. 2002, 67, 6136; (e) Simaan, S.; Biali, S. E.
J. Org. Chem. 2004, 69, 95.
21. Lee, M.-D.; Yang, K.-M.; Tsoo, C.-Y.; Shu, C.-M.; Lin, L.-G. Tetrahedron 2001, 57,
8095.