COMMUNICATIONS
Tengfei Kang et al.
for financial support. We thank Prof. Jason Chruma for help
with language polishing.
References
[1] For a review: K. C. Nicolaou, S. A. Snyder, T. Montag-
non, G. Vassilikogiannakis, Angew. Chem. 2002, 114,
1742–1773; Angew. Chem. Int. Ed. 2002, 41, 1668–1698.
[2] For reviews: a) A. G. Doyle, E. N. Jacobsen, Chem.
Rev. 2007, 107, 5713–5743; b) E. J. Corey, Angew.
Chem. 2009, 121, 2134–2151; Angew. Chem. Int. Ed.
2009, 48, 2100–2117; c) K. Ishihara, M. Fushimi, M.
Akakura, Acc. Chem. Res. 2007, 40, 1049–1055.
[3] For selected examples of inverse-electron-demand
Diels–Alder reactions, see: a) P. Buonora, J.-C. Olsen,
T. Oh, Tetrahedron 2001, 57, 6099–6138; b) V. V. Kouz-
netsov, Tetrahedron 2009, 65, 2721–2750; c) J.
Thorhauge, M. Johannsen, K. A. Jørgensen, Angew.
Chem. 1998, 110, 2543–2546; Angew. Chem. Int. Ed.
1998, 37, 2404–2406.
[4] a) E. J. Corey, T. Shibata, T. W. Lee, J. Am. Chem. Soc.
2002, 124, 3808–3809; b) K. Futatsugi, H. Yamamoto,
Angew. Chem. 2005, 117, 1508–1511; Angew. Chem. Int.
Ed. 2005, 44, 1484–1487; c) D. H. Ryu, T. W. Lee, E. J.
Corey, J. Am. Chem. Soc. 2002, 124, 9992–9993;
d) D. H. Ryu, E. J. Corey, J. Am. Chem. Soc. 2003, 125,
6388–6390; e) D. H. Ryu, G. Zhou, E. J. Corey, J. Am.
Chem. Soc. 2004, 126, 4800–4802; f) D. Liu, E. Canales,
E. J. Corey, J. Am. Chem. Soc. 2007, 129, 1498–1499;
g) K. Ishihara, M. Fushimi, Org. Lett. 2006, 8, 1921–
1924.
Scheme 1. The synthetic utility of the catalyst system.
more, treatment of the bicyclic product 3c with MeLi
(1.6m in diethyl ether) at À788C delivered tertiary al-
cohol 3ca in 90% yield as a 3:1 mixture of diastereo-
mers (Scheme 1(b)). Finally, epoxidation of diene 3g
with m-CPBA afforded 3ga in 65% yield and 93% ee
(Scheme 1(c)).
In summary, we have successfully developed an ef-
ficient chiral N,N’-dioxide-Zn(NTf2)2 complex for the
catalytic enantioselective DA cycloaddition of cyclo-
pentadiene with alkynones. A variety of alkynones
were tolerated in the catalytic system, providing nor-
bornadiene derivatives in up to 99% yield and up to
95% ee. The method is amenable to gram-scale syn-
thesis and the products are viable substrates for addi-
tional transformations. Further studies investigating
the application of this catalyst system to other DA re-
actions are underway in our laboratory.
[5] a) K. Ishihara, S. Kondo, H. Kurihara, H. Yamamoto, J.
Org. Chem. 1997, 62, 3026–3027; b) E. J. Corey, T. W.
Lee, Tetrahedron Lett. 1997, 38, 5755–5758; c) J. N. Pay-
ette, H. Yamamoto, Angew. Chem. 2009, 121, 8204–
8206; Angew. Chem. Int. Ed. 2009, 48, 8060–8062.
[6] D. A. Evans, S. J. Miller, T. Lectka, P. von Matt, J. Am.
Chem. Soc. 1999, 121, 7559–7573.
Experimental Section
[7] K. Ishihara, M. Fushimi, J. Am. Chem. Soc. 2008, 130,
7532–7533.
[8] For asymmetric Diels–Alder reactions with chiral ace-
tylenic carbene complexes as dienophiles, see: A.
Rahm, A. L. Rheingold, W. D. Wulff, Tetrahedron 2000,
56, 4951–4965.
[9] For chiral organoaluminum reagents catalyzed asym-
metric Diels–Alder reaction of methyl acrylate with cy-
clopentadiene, see: K. J. Maruoka, A. B. Concepcion,
H. Yamamoto, Bull. Chem. Soc. Jpn. 1992, 65, 3501–
3503.
Typical procedure for the asymmetric Diels–Alder
reaction of alkynones with cyclopentadiene.
A dry reaction tube was charged with L-RaPr2 (0.015 mmol,
10.5 mg), Zn(NTf2)2 (0.015 mmol, 9.4 mg), 4 MS (100 mg)
and alkynone 1a (0.30 mmol, 39.0 mg) under a N2 atmos-
phere. CH2Cl2 (0.6 mL) was added, and the mixture was
stirred at 308C for 0.5 h. Then, the mixture was cooled to
À408C and cyclopentadiene 2 (1.50 mmol, 120 mL) was
added under stirring. The reaction mixture was stirred at the
same temperature for 69 h. Finally, the residue was purified
by flash chromatography on silica gel (eluent: petroleum
ether/CH2Cl2 =2:1) to afford the desired product 3a.
À
[10] For selected examples of rhodium catalyzed C C bond
forming reactions by using chiral bicyclic dienes as li-
gands, see: a) C. Defieber, H. Grützmacher, E. M. Car-
reira, Angew. Chem. 2008, 120, 4558–4579; Angew.
Chem. Int. Ed. 2008, 47, 4482–4502; b) T. Hayashi, K.
Ueyama, N. Tokunaga, K. Yoshida, J. Am. Chem. Soc.
2003, 125, 11508–11509; c) C. Defieber, J.-F. Paquin, S.
Serna, E. M. Carreira, Org. Lett. 2004, 6, 3873–3876;
d) R. Shintani, K. Ueyama, I. Yamada, T. Hayashi,
Org. Lett. 2004, 6, 3425–3427; e) Y. Li, M.-H. Xu,
Chem. Commun. 2014, 50, 3771–3782; f) G. Berthon-
Gelloz, T. Hayashi, J. Org. Chem. 2006, 71, 8957–8960;
Acknowledgements
We appreciate the National Natural Science Foundation of
China (Nos. 21432006, 21372162), and the National Basic
Research Program of China (973 Program: 2011CB808600)
2048
ꢁ 2015 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
Adv. Synth. Catal. 2015, 357, 2045 – 2049