an available alternative to the traditional capture reagents to
trap the σ-vinylpalladium complexes.5 In the presence of
PdCl2 and CuX2 (X ) Cl, Br), a variety of 2-(2-(2-substituted
ethynyl)phenyl)-benzofuran-3-carboxylates could undergo an
intramolecular decarbonylative coupling reaction to capture
the σ-vinylpalladium intermediate in situ. In this paper, we
report our preliminary results on the first example of trapping
the σ-vinylpalladium intermediate by the decarboxylative
coupling reaction (eq 1). It is noteworthy that the products,
polycyclic aromatic furans, are prominent structural units
found in a wide range of natural products, pharmaceuticals,
and materials as well as important intermediates in organic
synthesis.6
Table 1. Screening Optimal Conditionsa
entry
R
CuX2 (equiv)
solvent
benzene
toluene
ClCH2CH2Cl
CH3CN
t (h) yield (%)b
1
2
3
4
5
6
7
8
Et (1a)
Et (1a)
Et (1a)
Et (1a)
Et (1a)
Et (1a)
Et (1a)
Et (1a)
Et (1a)
Et (1a)
Et (1a)
CuCl2 (3)
CuCl2 (3)
CuCl2 (3)
CuCl2 (3)
CuCl2 (3)
CuCl2 (3)
CuCl2 (1)
CuCl2 (5)
s
16 69 (2a)
23 70 (2a)
6
60 (2a)
Ethyl 2-(2-(2-phenylethynyl)phenyl)benzofuran-3-carbox-
ylate (1a) was treated with PdCl2 and CuCl2 to screen the
optimal reaction conditions, and the results are summarized
in Table 1. Initially, a set of solvents were examined, and
benzene was found to be the most effective solvent (entries
1-6). Treatment of substrate 1a with PdCl2 and CuCl2 in
benzene afforded the corresponding target product 2a in a
69% yield (entry 1). Identical results were obtained using
toluene as the solvent (entry 2). However, other solvents,
such as ClCH2CH2Cl, CH3CN, THF, and cyclohexane,
decreased the yield to some extent (entries 3-6). Subse-
quently, the amount of CuCl2 was tested (entries 7-9). We
found that 1 equiv of CuCl2 reduced the yield to 55% (entry
7), and 5 equiv of CuCl2 provided the same yield as that of
3 equiv of CuCl2 (entry 8). However, a trace amount of 2a
was observed without either CuCl2 or PdCl2 (entries 9 and
11). It is worth noting that no reaction is observed using
LiCl instead of CuCl2 (entry 10), and room temperature gives
a low yield after 24 h (entry 12). The screening results
demonstrated that two analogs, i-propyl 2-(2-(2-phenylethy-
24 20 (2a)
16 24 (2a)
23 54 (2a)
24 55 (2a)
16 70 (2a)
24 trace (2a)
16 0 (3a)
24 trace (2a)
24 16 (2a)
16 59 (2a)
16 65 (2a)
16 35 (3a)
16 59 (3a)
THF
cyclohexane
benzene
benzene
benzene
benzene
benzene
benzene
benzene
benzene
benzene
MeCN
9
10
LiCl (3)
11c
CuCl2 (3)
CuCl2 (3)
CuCl2 (3)
CuCl2 (3)
CuBr2 (3)
CuBr2 (3)
12d Et (1a)
13
14
15
16e
i-Pr (1b)
Bn (1c)
Et (1a)
Et (1a)
a Reaction conditions: 1 (0.3 mmol), PdCl2 (10 mol %), and CuCl2 (3
equiv) in solvent (5 mL) at 100 °C. b Isolated yield. c Without PdCl2. d At
room temperature. e PdBr2 (10 mol %) instead of PdCl2.
nyl)phenyl)benzofuran-3-carboxylate (1b) or benzyl 2-(2-
(2-phenylethynyl)phenyl)-benzofuran-3-carboxylate (1c), were
also suitable for the halopalladation/decarbonylation/carbon-
carbon forming reaction with PdCl2 and CuCl2 in moderate
yields (entries 13 and 14). To our delight, the reaction of
substrate 1a with PdBr2 and CuBr2 was conducted success-
fully in MeCN to afford the corresponding 5-bromo-6-
phenylbenzo[b]-naphtho[2,1-d]furan (3a) in 59% yield (entry
16).
(4) For other papers on the halopalladation reactions using PdX2/CuX2
as a catalytic system, see: (a) Ba¨ckvall, J. E.; Nordberg, R. E. J. Am. Chem.
Soc. 1980, 102, 393. (b) Ji, J.; Zhang, C.; Lu, X. J. Org. Chem. 1995, 60,
1160. (c) Ma, S.; Lu, X. J. Org. Chem. 1993, 58, 1245. (d) Li, J.-H; Jiang,
H.-F.; Feng, A.-Q.; Jia, L.-Q. J. Org. Chem. 1999, 64, 5984. (e) Li, J.-H.;
Jiang, H.-F.; Chen, M.-C. J. Org. Chem. 2001, 66, 3627. (f) Li, J.-H.; Liang,
Y.; Xie, Y.-X. J. Org. Chem. 2004, 69, 8125. (g) Li, J.-H.; Tang, S.; Xie,
Y.-X. J. Org. Chem. 2005, 70, 477. (h) Ma, S.; Wu, B.; Zhao, S. Org. Lett.
2003, 5, 4429. (i) Ma, S.; Wu, B.; Jiang, X.; Zhao, S. J. Org. Chem. 2005,
70, 2568. (j) Ma, S.; Wu, B.; Jiang, X. J. Org. Chem. 2005, 70, 2588. (k)
Huang, J.; Zhou, L.; Jiang, H. Angew. Chem., Int. Ed. 2006, 45, 1945.
(5) For selected reviews and papers on Pd-catalyzed decarboxylative
coupling reactions, see: (a) Goossen, L. J.; Goossen, K.; Rodríguez, N.;
Blanchot, M.; Linder, C.; Zimmermann, B. Pure Appl. Chem. 2008, 80,
1725. (b) Goossen, L. J.; Rodríguez, N.; Goossen, K. Angew. Chem., Int.
Ed. 2008, 47, 3100, and references cited therein. (c) Tatamidani, H.; Yokota,
K.; Kakiuchi, F.; Chatani, N. J. Org. Chem. 2004, 69, 5615. (d) Goossen,
L. J.; Knauber, T. J. Org. Chem. 2008, 73, 8631. (e) Goossen, L. J.;
Zimmermann, B.; Knauber, T. Angew. Chem., Int. Ed. 2008, 47, 7103. (f)
Goossen, L. J.; Rodríguez, N.; Linder, C. J. Am. Chem. Soc. 2008, 130,
15248. (g) Goossen, L. J.; Rudolphi, F.; Oppel, C.; Rodríguez, N. Angew.
Chem., Int. Ed. 2008, 47, 3043. (h) Maehara, A.; Tsurugi, H.; Satoh, T.;
Miura, M. Org. Lett. 2008, 10, 1259. (i) Nakano, M.; Tsurugi, H.; Satoh,
T.; Miura, M. Org. Lett. 2008, 10, 1851. (j) Forgione, P.; Brochu, M.-C.;
St-Onge, M.; Thesen, K. H.; Bailey, M. D.; Bilodeau, F. J. Am. Chem.
Soc. 2006, 128, 11350.
As shown in Table 2, we examined the scope of the
halopalladation/decarboxylation/carbon-carbon bond form-
ing process with respect to ethyl carboxylate substrates under
the standard conditions. Substituents at the terminal alkynic
moiety of 2-(2-(ethynyl)phenyl)benzofuran-3-carboxylates
were first evaluated in the presence of PdX2 and CuX2 (X
) Cl, Br) (entries 1-13). While carboxylates 1d-1f bearing
electron-rich aryl groups were treated with PdX2 and CuX2
(X ) Cl or Br) in good yields (entries 1-6), substrates
1g-1k, having either electron-deficient aryl or alkyl groups,
reduced the yields to some extent (entries 7-12). Ethyl 2-(2-
(2-o-tolylethynyl)phenyl)benzofuran-3-carboxylate (1e), for
instance, underwent the tandem reaction with PdCl2 and
(6) (a) Harvey, R. G. Polycyclic Aromatic Hydeocarbons; Wiley-VCH:
New York, 1996. (b) Harvey, R. G. In Handbook of EnVironmental
Chemistry; Hutzinger, D., Neilson, A., Eds.; Springer: Berlin, Heidelberg,
1997; Vol. 3,part 1, ch. 1. (c) Watson, M. D.; Fechtenkotter, A.; Mullen,
K. Chem. ReV. 2001, 101, 1267. (d) Law, K. Y. Chem. ReV. 1993, 93, 449.
(e) Jung, M. E. Tetrahedron 1976, 32, 3. (f) Molander, G. A. Acc. Chem.
Res. 1998, 31, 603. (g) Tiwari, S. S.; Srivastava, S. C. J. Med. Chem. 1967,
10, 983.
1140
Org. Lett., Vol. 11, No. 5, 2009