Photochemistry and Photobiology, 2008, 84 837
9. Bourne, H. R. (1997) How receptors talk to trimeric G proteins.
Curr. Opin. Cell Biol. 9, 134–142.
10. Iiri, T., Z. Farfel and H. R. Bourne (1998) G-protein diseases
furnish a model for the turn-on switch. Nature 394, 35–38.
11. Hamm, H. E. (2001) How activated receptors couple to G pro-
teins. Proc. Natl Acad. Sci. USA 98, 4819–4821.
12. Oldham, W. M., N. Van Eps, A. M. Preininger, W. L. Hubbell
and H. E. Hamm (2006) Mechanism of the receptor-catalyzed
activation of heterotrimeric G proteins. Nat. Struct. Mol. Biol. 13,
772–777.
13. Yeagle, P. L. and A. D. Albert (2003) A conformational trigger for
activation of a G protein by a G protein-coupled receptor. Bio-
chemistry 42, 1365–1368.
14. Cherfils, J. and M. Chabre (2003) Activation of G-protein Galpha
subunits by receptors through Galpha–Gbeta and Galpha–
Ggamma interactions. Trends Biochem. Sci. 28, 13–17.
15. Chabre, M. and M. le Maire (2005) Monomeric G-protein-
coupled receptor as a functional unit. Biochemistry 44, 9395–9403.
16. Shichida, Y. and T. Morizumi (2007) Mechanism of G-protein
activation by rhodopsin. Photochem. Photobiol. 83, 70–75.
17. Kisselev, O., A. Pronin, M. Ermolaeva and N. Gautam (1995)
Receptor-G protein coupling is established by a potential con-
formational switch in the beta gamma complex. Proc. Natl Acad.
Sci. USA 92, 9102–9106.
18. Kisselev, O. G., C. K. Meyer, M. Heck, O. P. Ernst and
K. P. Hofmann (1999) Signal transfer from rhodopsin to the
G-protein: Evidence for a two-site sequential fit mechanism. Proc.
Natl Acad. Sci. USA 96, 4898–4903.
19. Herrmann, R., M. Heck, P. Henklein, P. Henklein, C. Kleuss,
K. P. Hofmann and O. P. Ernst (2004) Sequence of interactions in
receptor-G protein coupling. J. Biol. Chem. 279, 24283–24290.
20. Herrmann, R., M. Heck, P. Henklein, K. P. Hofmann and
O. P. Ernst (2006) Signal transfer from GPCRs to G proteins:
Role of the Galpha N-terminal region in rhodopsin-transducin
coupling. J. Biol. Chem. 281, 30234–30241.
whole measured peptide concentration range. This indicates
that conformational changes in rhodopsin were rate-limiting
and that MII was formed from its precursor MI.
There are other examples in the literature where modifica-
tion with Bpa slightly increased ligand affinity for the
respective receptor. An N-formyl peptide ligand modified with
a Bpa moiety was reported to have a two-fold increased
affinity for its human neutrophil formyl peptide receptor (42).
Also, the attachment of a benzophenone probe to Ginkgolide
B at the 10-OH group, via either a methylene or carboxy
linkage, increased the ligand’s ability to inhibit the platelet-
activating factor receptor by more than three times (43).
CONCLUSION
We found that substituting Phe-64 of the Gtc(60-71)far peptide
by 4-benzoyl-L-phenylalanine (Bpa) yields a photolabile pep-
tide which retains its affinity for the active MII state. This
peptide should be suited to determine the binding site of
Gtc(60-71)far on the activated receptor by photocrosslinking
and subsequent receptor fragmentation followed by mass
spectrometric analysis. The great advantage of this novel MII-
recognizing peptide is the pentadeuterated benzophenone
moiety, which can be readily used in a mixture with the
nondeuterated twin peptide. This will lead to a facilitated MS
analysis of crosslinked samples, as labeled fragments of the
digested receptor will appear as double peaks in the MS
spectra. These characteristics make such peptides excellent
candidates for protein labeling studies in G protein research
and more general applications such as protein–protein inter-
action studies.
21. Nanoff, C., R. Koppensteiner, Q. Yang, E. Fuerst, H. Ahorn and
M. Freissmuth (2006) The carboxyl terminus of the Galpha -
subunit is the latch for triggered activation of heterotrimeric G
proteins. Mol. Pharmacol. 69, 397–405.
22. Nikiforovich, G. V. and G. R. Marshall (2006) 3D modeling of the
activated states of constitutively active mutants of rhodopsin.
Biochem. Biophys. Res. Commun. 345, 430–437.
23. Hamm, H. E., D. Deretic, A. Arendt, P. A. Hargrave, B. Koenig
and K. P. Hofmann (1988) Site of G protein binding to rhodopsin
mapped with synthetic peptides from the alpha subunit. Science
241, 832–835.
Acknowledgements—We thank Klaus Peter Hofmann for helpful
discussions and critical reading of the manuscript. We acknowledge
support from NIH grants GM 36564 (to K.N.) and DFG Sfb449 (to
O.P.E.).
24. Kisselev, O. G., J. Kao, J. W. Ponder, Y. C. Fann, N. Gautam and
G. R. Marshall (1998) Light-activated rhodopsin induces struc-
tural binding motif in G protein alpha subunit. Proc. Natl Acad.
Sci. USA 95, 4270–4275.
25. Kisselev, O. G. and M. A. Downs (2003) Rhodopsin controls a
conformational switch on the transducin gamma subunit. Struc-
ture 11, 367–373.
26. Natochin, M., M. Moussaif and N. O. Artemyev (2001) Probing
the mechanism of rhodopsin-catalyzed transducin activation.
J. Neurochem. 77, 202–210.
27. Marin, E. P., A. G. Krishna and T. P. Sakmar (2002) Disruption
of the alpha 5 helix of transducin impairs rhodopsin-catalyzed
nucleotide exchange. Biochemistry 41, 6988–6994.
REFERENCES
1. Hamm, H. E. (1998) The many faces of G protein signaling.
J. Biol. Chem. 273, 669–672.
2. Wess, J. (1997) G-protein-coupled receptors: Molecular mecha-
nisms involved in receptor activation and selectivity of G-protein
recognition. FASEB J. 11, 346–354.
3. Schwalbe, H. and G. Wess (2002) Dissecting G-protein-coupled
receptors: Structure, function, and ligand interaction. Chembio-
chem 3, 915–919.
4. Lambright, D. G., J. Sondek, A. Bohm, N. P. Skiba, H. E. Hamm
and P. B. Sigler (1996) The 2.0 .ANG. crystal structure of a het-
erotrimeric G protein. Nature 379, 311–319.
5. Palczewski, K., T. Kumasaka, T. Hori, C. A. Behnke, H.
Motoshima, B. A. Fox, I. Le Trong, D. C. Teller, T. Okada, R. E.
Stenkamp, M. Yamamoto and M. Miyano (2000) Crystal struc-
ture of rhodopsin: A G protein-coupled receptor. Science 289,
739–745.
28. Filipek, S., K. A. Krzysko, D. Fotiadis, Y. Liang, D. A.
Saperstein, A. Engel and K. Palczewski (2004) A concept for G
protein activation by G protein-coupled receptor dimers: The
transducin ⁄ rhodopsin interface. Photochem. Photobiol. Sci. 3,
628–638.
6. Okada, T., Y. Fujiyoshi, M. Silow, J. Navarro, E. M. Landau and
Y. Shichida (2002) Functional role of internal water molecules in
rhodopsin revealed by x-ray crystallography. Proc. Natl Acad. Sci.
USA 99, 5982–5987.
7. Li, J., P. C. Edwards, M. Burghammer, C. Villa and
G. F. Schertler (2004) Structure of bovine rhodopsin in a trigonal
crystal form. J. Mol. Biol. 343, 1409–1438.
8. Bohm, A., R. Gaudet and P. B. Sigler (1997) Structural aspects of
heterotrimeric G-protein signaling. Curr. Opin. Biotechnol. 8, 480–
487.
29. Nikiforovich, G. V., C. M. Taylor and G. R. Marshall (2007)
Modeling of the complex between transducin and photoactivated
rhodopsin, a prototypical G-protein-coupled receptor. Biochem-
istry 46, 4734–4744.
30. Fanelli, F. and D. Dell’Orco (2005) Rhodopsin activation follows
precoupling with transducin: Inferences from computational
analysis. Biochemistry 44, 14695–14700.
31. Ciarkowski, J., M. Witt and R. Slusarz (2005) A hypothesis for
GPCR activation. J. Mol. Model. 11, 407–415.