Please do not adjust margins
Organic & Biomolecular Chemistry
Page 6 of 8
DOI: 10.1039/C7OB03204H
ARTICLE
Journal Name
it was demonstrated that this transformation could be achieved Pillow (Genentech), Dr Ray Finlay (AstraZeneca) and Dr Andrew
stereospecifically using enantiopure (S)-N,N,O-trimethylserine (see Mortlock (AstraZeneca) for helpful discussions, Prof. K. Yamada
the ESI for its preparation) to afford
4 (58%) as a single (Nagoya) for copies of NMR spectra for aplyronine D, and the EPSRC
diastereomer.37,38 Given the key structural requirement for the UK National Mass Spectrometry Facility at Swansea University for
presence of the N,N,O-trimethylserine moiety for the potent mass spectra.
biological activity of aplyronine A, it is likely that each epimer will
have different binding affinities with tubulin and hence variable
Notes and references
cytotoxicity, thus the preparation of configurationally pure
stereoisomers will allow these SAR effects to be investigated in
future work.39,40
1
a) D. J. Newman and G. M. Cragg, J. Nat. Prod., 2016, 79,
629; b) M. S. Butler, A. A. B. Robertson and M. A. Cooper,
Nat. Prod. Rep., 2014, 31, 1612; c) K. von Schwarzenberg and
A. M. Vollmar, Cancer Lett., 2013, 332, 295; d) S. M. Dalby
30
and I. Paterson, Curr. Opin. Drug Discov. Devel., 2010, 13
777; e) I. Paterson and E. A. Anderson, Science, 2005, 310
,
,
Fmoc
i. 31, TCBC, Et3N, DMAP, THF, PhMe
52% ii. HF•pyr, pyr, THF
451.
ꢀ
NH
Me
N
O
O
2
a) M. L. Ciavatta, F. Lefranc, M. Carbone, E. Mollo, M.
Gavagnin, T. Betancourt, R. Dasari, A. Kornienko and R. Kiss,
Med. Res. Rev., 2017, 37, 702; b) D. J. Newman and G. M.
Cragg, Mar. Drugs, 2017, 15, 99; c) R. V. J. Chari, M. L. Miller
and W. C. Widdison, Angew. Chem. Int. Ed., 2014, 53, 3796;
iii. (S)-N,N,O-trimethylserine, TCBC
DMAP, Et3N, PhMe, THF
OH
31
Me
Me2N
N
Fmoc
O
OMe
N
H
d) J. M. Lambert and R. V. J. Chari, J. Med. Chem., 2014, 57
,
6949; d) P. D. Senter and E. L. Sievers, Nat. Biotechnol., 2012,
30, 631.
O
OH
O
7
O
OH
O
OAc
Me
N
CHO
3
a) K. Yamada, M. Ojika, T. Ishigaki, Y. Yoshida, H. Ekimoto and
M. Arakawa, J. Am. Chem. Soc., 1993, 115, 11020; b) M.
Ojika, H. Kigoshi, Y. Yoshida, T. Ishigaki, M. Nisiwaki, I.
Tsukada, M. Arakawa, H. Ekimoto and K. Yamada,
Tetrahedron, 2007, 63, 3138; c) M. Ojika, H. Kigoshi, K.
Suenaga, Y. Imamura, K. Yoshikawa, T. Ishigaki, A. Sakakura,
T. Mutou and K. Yamada, Tetrahedron, 2012, 68, 982.
M. Ojika, H. Kigoshi, T. Ishigaki, I. Tsukada, T. Tsuboi, T.
Ogawa and K. Yamada, J. Am. Chem. Soc., 1994, 116, 7441.
a) H. Kigoshi, M. Ojika, T. Ishigaki, K. Suenaga, T. Mutou, A.
Sakakura, T. Ogawa and K. Yamada, J. Am. Chem. Soc., 1994,
116, 7443; b) H. Kigoshi, K. Suenaga, T. Mutou, T. Ishigaki, T.
Atsumi, H. Ishiwata, A. Sakakura, T. Ogawa, M. Ojika and K.
Yamada, J. Org. Chem., 1996, 61, 5326.
K. Hirata, S. Muraoka, K. Suenaga, T. Kuroda, K. Kato, H.
Tanaka, M. Yamamoto, M. Takata, K. Yamada and H. Kigoshi,
J. Mol. Biol., 2006, 356, 945.
a) S. Saito, S. Watabe, H. Ozaki, H. Kigoshi, K. Yamada, N.
Fusetani and H. Karaki, J. Biochem., 1996, 120, 552; b) K.
Suenaga, N. Kamei, Y. Okugawa, M. Takagi, A. Akao, H.
29
4
MeO
OMe
Scheme 6 Preparation of the C29 linker-modified aplyronine 4.
4
5
Conclusions
In conclusion, we have achieved the total synthesis of the potent
antimitotic macrolides aplyronines A (1.3%) and D (1.1%) in 29 steps
LLS based on an improved second-generation route that has
provided straightforward access to multi-gram quantities of key
intermediates. Additionally, we have prepared the linker-modified
version 4 for bioconjugation studies in the context of exploring the
use of aplyronines as novel cytotoxic payloads for ADCs in targeted
cancer chemotherapy. We envisage that this flexible and modular
synthetic route can provide a sustainable supply of the aplyronines
and their designed analogues for further biological studies, and in
future work will adapt it to generate novel aplyronine-based
payloads for the discovery of improved ADCs.
6
7
Kigoshi and K. Yamada, Bioorg. Med. Chem. Lett., 1997, 7,
269.
a) J. S. Allingham, V. A. Klenchin and I. Rayment, Cell Mol. Life
Sci., 2006, 63, 2119; b) K.-S. Yeung and I. Paterson, Angew.
8
9
Chem. Int. Ed., 2002, 41, 4632.
M. Kita, Y. Hirayama, K. Yoneda, K. Yamagishi, T. Chinen, T.
ꢀ
Usui, E. Sumiya, M. Uesugi and H. Kigoshi, J. Am. Chem. Soc.,
2013, 135, 18089.
10 M. Kita and H. Kigoshi, Nat. Prod. Rep., 2015, 32, 534.
11 a) I. Hayakawa, K. Saito, S. Matsumoto, S. Kobayashi, I.
Taniguchi, K. Kobayashi, Y. Fujii, T. Kaneko and H. Kigoshi,
Org. Biomol. Chem., 2017, 15, 124; b) K. Kobayashi, Y. Fujii, I.
Hayakawa and H. Kigoshi, Org. Lett., 2011, 13, 900.
ꢀ
ꢀ
Conflicts of Interest
There are no conflicts of interest to declare.
12 a) I. Paterson, S. J. Fink, L. Y. W. Lee, S. J. Atkinson and S. B.
Blakey, Org. Lett., 2013, 15, 3118; b) I. Paterson, M. D.
Acknowledgements
Woodrow and C. J. Cowden, Tetrahedron Lett., 1998, 39
,
We thank the Public Scholarship, Development, Disability and
Maintenance Fund of the Republic of Slovenia (Studentship to
N.A.), the Todd-Raphael Fund (Scholarship to S.W.), Downing
College, Cambridge (Mays-Wild Fellowship to M.P.H), and Prof.
David Spring for support, Dr. Michael Woodrow for his contribution
to earlier synthetic studies Dr. David Newman (NCI), Dr. Thomas
6041; c) I. Paterson, C. J. Cowden and M. D. Woodrow,
Tetrahedron Lett., 1998, 39, 6037; d) I. Paterson, S. B. Blakey
and C. J. Cowden, Tetrahedron Lett., 2002, 43, 6005.
13 For other synthetic efforts towards the aplyronines, see: a) J.
A. Marshall and B. A. Johns, J. Org. Chem., 2000, 65, 1501; b)
W. P. Hong, M. N. Noshi, A. El-Awa and P. L. Fuchs, Org. Lett.,
2011, 13, 6342; c) M. N. Noshi, A. El-Awa, E. Torres and P. L.
6 | J. Name., 2012, 00, 1-3
This journal is © The Royal Society of Chemistry 20xx
Please do not adjust margins