I. Niewczas, M. Majewski
SHORT COMMUNICATION
cornerstone of the synthetic strategy towards diastero- and
enantioselective synthesis of higher carbohydrates. In this
system proline organocatalysis and the lithium enolate
methodology are complementing each other. We are work-
ing on expanding this methodology to allow access to more
carbohydrate stereoisomers at higher levels of selectivity.
[1]
Reviews: a) S. Jarosz, J. Carbohydr. Chem. 2001, 20, 93; b) I.
Hemeon, A. J. Bennet, Synthesis 2007, 1899; c) G. Casiraghi,
G. Rassu, Stud. Nat. Prod. Chem. 1992, 11, 429; d) S. Jarosz,
A. Zamojski, Curr. Org. Chem. 2003, 7, 13; e) R. A. Dwek,
T. D. Butters, Chem. Rev. 2002, 102, 283; f) J. K. Bashkin,
Chem. Rev. 2000, 100, 4265; g) S. Han, B. E. Collins, J. C. Paul-
son, ACS Symp. Ser. 2007, 960, 2; h) J. P. Kamerling, G. J. Ger-
wig, Methods Mol. Biol. 2006, 347, 69; i) D. K. Ress, R. J. Lin-
hardt, Curr. Org. Synth. 2004, 1, 31; j) K. Ikeda, M. Sato, Y.
Torisawa, Curr. Med. Chem.: Anti-Infect. Agents 2004, 3, 339;
k) H. Ando, A. Imamura, Trends Glycosci. Glycotechnol. 2004,
16, 293.
Experimental Section
Second Aldol Reaction. Typical Procedure
[2]
Recent examples: a) S. Jarosz, A. Gajewska, Pol. J. Chem. 2007,
81, 1949; b) A. Fuerstner, M. Wuchrer, Chem. Eur. J. 2006, 12,
76; c) H.-M. Liu, D.-P. Zou, E. Zhang, W.-G. Zhu, T. Peng,
Eur. J. Org. Chem. 2004, 2103; d) S. Jarosz, Carbohydr. Res.
2003, 338, 407; e) M. Jorgensen, E. H. Iversen, R. Madsen, J.
Org. Chem. 2001, 66, 4625; f) J. Marco-Contellas, E. de Opazo,
N. Arroyo, Tetrahedron 2001, 57, 4729; g) P. Vogel, Curr. Org.
Chem. 2000, 4, 455; h) H. M. Liu, F.-W. Liu, X.-P. Song, J.-y.
Zhang, Y. Lin, Tetrahedron: Asymmetry 2006, 17, 3230; i) C.
DeMeo, U. Priyadarshani, Carbohydr. Res. 2008, 343, 1540.
a) M. Majewski, D. M. Gleave, P. Nowak, Can. J. Chem. 1995,
73, 1616; b) M. Majewski, P. Nowak, Synlett 1999, 1447; c)
M. Majewski, P. Nowak, J. Org. Chem. 2000, 65, 5152; d) M.
Majewski, R. Lazny, P. Nowak, Tetrahedron Lett. 1995, 36,
5465; e) N. Palyam, I. Niewczas, M. Majewski, Tetrahedron
Lett. 2007, 48, 9195.
a) D. Enders, T. Gasperi, Chem. Commun. 2007, 88; b) C.
Grondal, D. Enders, Adv. Synth. Catal. 2007, 349, 694; c) C.
Grondal, D. Enders, Tetrahedron 2006, 62, 329; d) J. T. Suri, S.
Mitsumori, K. Alberthofer, F. Tanaka, C. F. Barbas III, J. Org.
Chem. 2006, 71, 3822; e) M. Majewski, I. Niewczas, N. Palyam,
Synlett 2006, 15, 2387; f) D. Enders, S. Chow, Eur. J. Org.
Chem. 2006, 4578; g) C. Grondal, D. Enders, Synlett 2006, 3507;
h) I. Ibrahem, W. Zou, Y. Xu, A. Cordova, Adv. Synth. Catal.
2006, 348, 211; i) D. Enders, C. Grondal, Angew. Chem. Int. Ed.
2005, 44, 1210; j) I. Ibrahem, A. Cordova, Tetrahedron Lett.
2005, 46, 3363; k) J. T. Suri, D. B. Ramachary, C. F. Barbas III,
Org. Lett. 2005, 7, 1383; l) J. Casas, M. Engqvist, I. Ibrahem, B.
Kaynak, A. Cordova, Angew. Chem. Int. Ed. 2005, 117, 1367.
a) D. Enders, M. Voith, A. Lenzen, Angew. Chem. Int. Ed.
2005, 44, 1304; b) M. Markert, R. Mahrwald, Chem. Eur. J.
2008, 14, 40.
a) D. Enders, B. Bockstiegel, Synthesis 1989, 493; b) D. Enders,
J. Barbion, Chem. Eur. J. 2008, 14, 2842, and references cited
therein.
a) D. Enders, S. J. Ince, Synthesis 2002, 619; b) D. Enders, G.
Raabe, S. J. Ince, S. M. Bonnekessel, J. Runsink, Synlett 2002,
962.
a) M. Kalesse, E. Claus, A. Pahl, P. G. Jones, H. M. Meyer,
Tetrahedron Lett. 1997, 38, 1359; b) K. Biswas, H. Lin, J. T.
Njardarson, M. D. Chappell, T.-C. Chou, Y. Guan, W. P. Tong,
L. He, S. B. Horwitz, S. J. Danishefsky, J. Am. Chem. Soc.
2002, 124, 9825; c) K. N. Fleming, R. E. Taylor, Angew. Chem.
Int. Ed. 2004, 43, 1728.
4-(1Ј-tert-Butyldimethylsilyloxy-2Ј,2Ј-dimethoxy)ethyl-6-[hydroxy-
(phenyl)]methyl-2,2-dimethyl-1,3-dioxan-5-one
(16aca):
nBuLi
(0.37 mL, 0.88 mmol, 2.38 solution in hexanes) was added drop-
wise to a stirred solution of diisopropylamine (0.18 mL, 0.96 mmol,
2.4 equiv.) in THF (10 mL) at 0 °C under nitrogen. After 30 min
the mixture was cooled to –78 °C and a solution of the TBS-pro-
tected aldol substrate (139 mg, 0.40 mmol, 1.00 equiv.) in THF was
added slowly. The mixture was stirred for 40 min at –78 °C.
PhCHO (110 mg, 0.11 mL, 1.00 mmol, 2.5 equiv.) was then added.
After 20 min the reaction was quenched with concentrated phos-
phate buffer (pH 7.5; 10 mL) and extracted three times with diethyl
ether. The combined organic layers were rinsed with saturated
NaCl, dried with MgSO4, concentrated, and fractionated by FCC
(3–7% ethyl acetate in hexane) to give 16ata (44.5 mg, 0.10 mmol,
25%) as a pale yellow liquid, and 16aca (89.7 mg, 0.30 mmol, 50%)
as a pale yellow liquid. Diastereoselectivity of the reaction was
measured on the crude product by integration of peaks in 1H
NMR: δ = 5.12 (dd, J = 4.6 Hz), 4.89 (d, J = 8.4 Hz) 4.78 ppm (d,
J = 8.4 Hz) and was found to be 2:64:34 syn/aca/ata.
[3]
[4]
16aca: [α]2D2 = +17 (c = 1.5, CHCl ). IR: ν = 3535, 1737 cm–1. H
1
˜
3
NMR (500 MHz, CDCl3): δ = 7.42–7.24 (m, 5 H), 4.89 (d, J =
8.4 Hz, 1 H), 4.59 (d, J = 7.5 Hz, 1 H), 4.44 (dd, J1 = 1.2, J2
=
1.8 Hz, 1 H), 4.15 (dd, J1 = 1.2, J2 = 8.4 Hz, 1 H), 4.12 (dd, J1 =
1.9, J2 = 7.5 Hz, 1 H), 4.06 (br. s, 1 H), 3.46 (s, 3 H), 3.45 (s, 3 H),
1.41 (s, 3 H), 1.38 (s, 3 H) 0.90 (s, 9 H), 0.15 (s, 3 H), 0.11 (s, 3 H)
ppm. 13C NMR (125 MHz, CDCl3): δ = 208.97, 139.8, 128.1, 128.0,
127.6, 105.7, 98.7, 79.8, 79.1, 74.7, 73.7, 56.2, 56.0, 28.8, 26.1, 26.0,
20.6, 18.4, –4.2, –4.4 ppm. HRMS m/z calcd. for C23H38O7Si
472.2731 [M + NH4], found 472.2729 (CI).
[5]
[6]
[7]
[8]
16ata: [α]2D9 = –64 (c = 1.85, CHCl ). IR: ν = 3535, 1737 cm–1. H
1
˜
3
NMR (500 MHz, CDCl3): δ = 7.41–7.24 (m, 5 H), 4.78 (dd, J1 =
1.7, J2 = 8.4 Hz, 1 H), 4.52 (d, J = 7.5 Hz, 1 H), 4.31 (dd, J1 = 1.2,
J2 = 1.7 Hz, 1 H), 4.15 (dd, J1 = 1.2, J2 = 8.4 Hz, 1 H), 4.09 (dd,
J1 = 1.7, J2 = 7.5 Hz, 1 H), 3.63 (d, J = 1.7 Hz, 1 H), 3.45 (s, 3 H),
3.37 (s, 3 H), 1.32 (s, 3 H), 1.17 (s, 3 H), 0.88 (s, 9 H), 0.1 (s, 3 H),
0.09 (s, 3 H) ppm. 13C NMR (125 MHz, CDCl3): δ = 209.3,139.9,
128.2, 128.0, 127.2, 105.4, 101.7, 77.9, 75.1, 73.8, 72.4, 56.5, 55.5,
26.2, 26.0, 24.0, 23.5, 18.3, –4.3, –4.7 ppm. HRMS m/z calcd. for
C23H38O7Si 472.2731 [M + NH4], found 472.2731 (CI).
[9]
Examples: a) R. Annunziata, M. Cinquini, F. Cozzi, A. Re-
stelli, J. Chem. Soc., Chem. Commun. 1984, 1253; b) D. A. Ev-
ans, P. J. Coleman, B. Cote, J. Org. Chem. 1997, 62, 788; c) C.
Delas, O. Blacque, C. Moise, Tetrahedron Lett. 2000, 41, 8269;
d) D. E. Ward, G. E. Beye, M. Sales, I. Q. Alarcon, H. M.
Gillis, V. Jheengut, J. Org. Chem. 2007, 72, 1667; e) G. P. Luke,
J. Morris, J. Org. Chem. 1995, 60, 3013.
Supporting Information (see also the footnote on the first page of
this article): Procedures and spectroscopic data for for bis-aldols
and carbohydrate derivatives.
Acknowledgments
[10]
a) D. Gryko, R. Lipinski, Eur. J. Org. Chem. 2006, 3864; b) S.
Luo, X. Mi, L. Zhang, S. Liu, H. Xu, J.-P. Cheng, Tetrahedron
2007, 63, 1923; c) K. Funabiki, H. Nagaya, M. Ishihara, M.
Matsui, Tetrahedron 2006, 62, 5049; d) C. Ji, Y. Peng, C. Huang,
N. Wang, Z. Luo, Y. Jiang, J. Mol. Catal. A 2006, 246, 136.
The authors thank National Science and Engineering Research
Council of Canada for funding and the Saskatchewan Structural
Sciences Center for help with analytical and crystallographic mea-
surements.
36
www.eurjoc.org
© 2009 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
Eur. J. Org. Chem. 2009, 33–37