900
M. Kasthuri et al.
Letter
Synlett
M. J.; Silverman, J. A.; Tangonan, B. T.; Pietro, T.; Yang, W.;
Yoburn, J. C.; Yu, C. H.; Zimmerman, K. M.; O’Brien, T.; Lew, W.
Bioorg. Med. Chem. Lett. 2009, 19, 5158.
(19) Typical Experimental Procedure for the Synthesis of 2-Ami-
nobenzaxozole from o-Aminophenol (Table 2, Entry 1)
To a solution of o-aminophenol (400 mg, 3.67 mmol) and NCTS
(998 mg, 3.67 mmol) in THF (6 mL), 1 M LiHMDS in hexane
(3.67 mL, 3.67 mmol) was added and stirred at 5 °C to r.t. for 1
h. Then the reaction mixture was poured in ice water and
stirred for 15 min. Then extracted with EtOAc, the organic layer
was separated. The organic layer was washed with brine solu-
tion. Then organic layer was dried over Na2SO4, filtered, and
concentrated under reduced pressure. The crude product was
purified by silica gel column chromatography to obtained pure
2-aminobenzaxozole in 90% yield (471 mg).
(5) Armstrong, S. C.; Cozza, K. L. Psychosomatics 2003, 44, 430.
(6) Bachmann, K. A. Curr. Opin. Invest. Drugs 2000, 1, 219.
(7) Magiorakos, A. P.; Srinivasan, A.; Carey, R. B.; Carmeli, Y.;
Falagas, M. E.; Giske, C. G.; Harbarth, S.; Hindler, J. F.; Kahlmeter,
G.; Liljequist, B. O.; Paterson, D. L.; Rice, L. B.; Stelling, J.;
Struelens, M. J.; Vatopoulos, A.; Weber, J. T.; Monnet, D. L. Clin.
Microbiol. Infect. 2012, 18, 268.
(8) (a) Powers, J. P.; Li, S.; Jaen, J. C.; Liu, J.; Walker, N. P. C.; Wang,
Z.; Wesche, H. Bioorg. Med. Chem. Lett. 2006, 16, 2842.
(b) Valdez, J.; Cedillo, R.; Hernández-Campos, A.; Yépez, L.;
Hernández-Luis, F.; Navarrete-Vázquez, G.; Tapia, A.; Cortés, R.;
Hernández, M.; Castillo, R. Bioorg. Med. Chem. Lett. 2002, 12,
2221. (c) Ella, D. A. E.; Goßnitzer, E.; Wendelin, W. J. Heterocycl.
Chem. 1996, 33, 373.
(20) The spectral data of Table 2, entries 1–5 were in accordance
with those reported in the literature: Chikhale, R. V.; Pant, A.
M.; Menghani, S. S.; Wadibhasme, P. G.; Khedekar, P. B. S. Afr. J.
Chem. 2013, 66, 254.
(21) Spectral Data for 1f (Table 2, Entry 6)
(9) (a) Saha, P.; Ramana, T.; Purkait, N.; Ali, M. A.; Paul, R.;
Punniyamurthy, P. J. Org. Chem. 2009, 74, 8719. (b) Wang, F.;
Cai, S.; Liao, Q.; Xi, C. J. Org. Chem. 2011, 76, 3174. (c) Shen, G.;
Bao, W. Adv. Synth. Catal. 2010, 352, 981. (d) Evindar, G.; Batey,
R. A. Org. Lett. 2003, 5, 133.
(10) (a) Narsaiah, A. V.; Reddy, A. R.; Yadav, J. S. Synth. Commun.
2010, 40, 1750. (b) Wan, Z.-K.; Ousman, E. F.; Papaioannou, N.;
Saiah, E. Tetrahedron Lett. 2011, 52, 4149. (c) Scheffer, U.; Strick,
A.; Ludwig, V.; Peter, S.; Kalden, E.; Gobel, M. W. J. Am. Chem.
Soc. 2005, 127, 2211.
(11) (a) Kawano, T.; Hirano, K.; Satoh, T.; Miura, M. J. Am. Chem. Soc.
2010, 132, 6900. (b) Monguchi, D.; Fujiwara, T.; Furukawa, H.;
Mori, A. Org. Lett. 2009, 11, 1607. (c) Wang, Q.; Schreiber, S. L.
Org. Lett. 2009, 11, 5178. (d) Matsuda, N.; Hirano, K.; Satoh, T.;
Miura, M. Org. Lett. 2011, 13, 2860.
(12) Manjunath, L.; Ramaiah Prabhu, K. J. Org. Chem. 2011, 76, 7938.
(13) Zhu, T.-H.; Wang, S.-Y.; Wang, G.-N.; Ji, S.-J. Chem. Eur. J. 2013,
19, 5850.
(14) Encyclopedia of Occupational Health and Safety; Vol. 1 and 2;
International Labour Offices: Geneva, 1983, 328.
(15) (a) Kurzer, F. J. Chem. Soc. 1949, 1034. (b) Kurzer, F. J. Chem. Soc.
1949, 3029.
(16) Anbarasan, P.; Neumann, H.; Beller, M. Angew. Chem. Int. Ed.
2011, 50, 519.
(17) Anbarasan, P.; Neumann, H.; Beller, M. Chem. Eur. J. 2011, 17,
4217.
Mp 136–138 °C; Rf = 0.28 (40% EtOAc–cyclohexane). 1H NMR
(400 MHz, DMSO-d6): δ = 6.96 (d, J = 7.65 Hz, 1 H), 7.09 (s, 1 H),
7.12 (m, 2 H), 7.19 (d, J = 7.28 Hz, 1 H), 7.30 (m, 2 H), 7.32 (m, 1
H), 7.36 (s, 2 H, NH2). 13C NMR (100 MHz, DMSO-d6): δ = 118.2,
121.1, 124.6, 126.5, 128.2, 132.4, 138.2, 142.8, 144.6, 152.1, 168.
ESI-MS: m/z = 211.19 [M + H]+.
Spectral Data for 1g (Table 2, Entry 7)
Mp 168–170 °C; Rf = 0.32 (40% EtOAc–cyclohexane). 1H NMR
(400 MHz, DMSO-d6): δ = 7.22 (d, J = 8.4 Hz, 1 H), 6.90 (d, J = 2.4
Hz, 1 H), 6.76 (s, 1 H), 5.24 (br s, 2 H, NH2), 3.82 (s, 3 H). 13C NMR
(100 MHz, DMSO-d6): δ = 55.6, 96.8, 115.1, 135.8, 150.8, 158.1,
166.2. ESI-MS: m/z = 165.2 [M + H]+.
(22) The same procedure was applied for the synthesis of 2-amino-
benzimidazole derivatives (Table 2, entries 8–14). The spectral
data were in accordance with those reported in the literature:
(a) Frei, R.; Breitbach, A. S.; Blackwell, H. E. Angew. Chem. Int. Ed.
2012, 51, 5226. (b) Hernández-Covarrubias, C.; Vilchis-Reyes,
M. A.; Yépez-Mulia, L.; Sánchez-Díaz, R.; Navarrete-Vázquez, G.;
Hernández-Campos, A.; Castillo, R.; Hernández-Luis, F. Eur. J.
Med. Chem. 2012, 52, 193. (c) Kolodyazhnaya, S. N.; Simonov, A.
M. Chem. Heterocycl. Compd. 1969, 5, 714. (d) Huigens, R. W. III.;
Reyes, S.; Catherine, S. R.; Bunders, C.; Rogers, S. A.; Steinhauer,
A. T.; Melander, C. Bioorg. Med. Chem. 2010, 18, 663. (e) Titova, I.
A.; Vakul’skaya, T. I.; Larina, L. I.; Mizandrontsev, M. I.; Volkov,
V. A.; Dolgushin, G. V.; Lopyrev, V. A. Russ. J. Org. Chem. 2005, 41,
1306.
(18) Yang, Y.; Zhang, Y.; Wang, J. Org. Lett. 2011, 13, 5608.
© Georg Thieme Verlag Stuttgart · New York — Synlett 2015, 26, 897–900