Page 3 of 4
Organic & Biomolecular Chemistry
DOI: 10.1039/C5OB01679G
through the decomposition of NH4I and the subsequent reaction
determination of HRMS.
with DMSO; meanwhile the decomposition of DMSO formed
MeSH and HCHO.14c,20 Then the homolysis of I2 produced iodine
radical, followed to react with MeSH to give a methylthio radical
MeS·.20b Subsequently, the addition of radical MeS· to the
paraꢀposition of aniline generated a radical intermediate I. The
methylthiolated product 2 finally produced via the elimination of
hydrogen radical from I.
45
aCollege of Chemistry and Materials Science, Jiangsu Provincial Key
Laboratory of Material Cycle Processes and Pollution Control, Nanjing
Normal University, Nanjing 210097, China
5
bJiangsu Collaborative Innovation Center of Biomedical Functional
50 Materials, Nanjing 210023, China
Fax: 86-25-85891767; Tel: 86-25-85891767;
E-mail: sunpeipei@njnu.edu.cn
† Electronic Supplementary Information (ESI) available: [details of any
55 supplementary information available should be included here]. See DOI:
10.1039/b000000x/
Notes and references
1
(a) H. Wei and G. F. Yang, Bioorg. Med. Chem., 2006, 14, 8280; (b)
S. A. Laufer, H. G. Striegel and G. K. Wagner, J. Med. Chem., 2002,
45, 4695; (c) A. GallardoꢀGodoy, A. Fierro, T. H. McLean, M.
Castillo, B. K. Cassels, M. ReyesꢀParada and D. E. Nichols, J. Med.
Chem., 2005, 48, 2407; (d) A. Gangjee, Y. Zeng, T. Talreja, J. J.
McGuire, R. L. Kisliuk and S. F. Queener, J. Med. Chem., 2007, 50,
3046.
60
65
10
2
(a) L. Wang, W. He and Z. Yu, Chem. Soc. Rev., 2013, 42, 599; (b) S.
G. Modha, V. P. Mehta and E. V. Van der Eycken, Chem. Soc. Rev.,
2013, 42, 5042; (c) Y. Ookubo, A. Wakamiya, H. Yorimitsu and A.
Osuka, Chem. Eur. J., 2012, 18, 12690; (d) S. Otsuka, D. Fujino, K.
Murakami, H. Yorimitsu and A. Osuka, Chem. Eur. J., 2014, 20,
13146; (e) J. F. Hooper, R. D. Young, I. Pernik, A. S. Weller and M.
C. Willis, Chem. Sci., 2013, 4, 1568; (f) F. Pan, H. Wang, P. X. Shen,
J. Zhao and Z. J. Shi, Chem. Sci., 2013, 4, 1573; (g) A. J. Eberhart, J.
E. Imbriglio and D. J. Procter, Org. Lett., 2011, 13, 5882; (h) Z. J.
Quan, Y. Lv, F. Q. Jing, X. D. Jia, C. D. Huo and X. C.Wang, Adv.
Synth. Catal., 2014, 356, 325.
Scheme 2 Proposed reaction mechanism for the formation of 2.
70
As shown above, the thermal decomposition of DMSO
15 generated HCHO. Several ammoniumꢀpromoted formylations by
DMSO were also reported.21 Based on these works, we therefore
proposed that a Mannichꢀtype reaction mechanism might be
involved in the formation of the methyleneꢀbridged product 3
(Scheme 3). The nucleophilic addition of aniline to HCHO and
20 next elimination of H2O formed methylenated intermediate II,
and the nucleophilic substitution of this electronꢀdeficient
intermediate to another aniline on the paraꢀposition generated 3.
75
3
4
(a) T. Sugahara, K. Murakami, H. Yorimitsu and A. Osuka, Angew.
Chem., Int. Ed., 2014, 53, 9329; (b) V. J. Ram and N. Agarwal,
Tetrahedron Lett., 2001, 42, 7127.
(a) J. F. Hooper, A. B. Chaplin, C. GonzalezꢀRodríguez, A. L.
Thompson, A. S. Weller and M. C. Willis, J. Am. Chem. Soc., 2012,
134, 2906; (b) M. Arambasic, J. F. Hooper and M. C. Willis, Org.
Lett., 2013, 15, 5162.
80
5
(a) A. C. Fernandes, J. A. Fernandes, C. C. Romao, L. F. Veiros and
M. J. Calhorda, Organometallics, 2010, 29, 5517; (b) V. Y.
Kukushkin, Coord. Chem. Rev., 1995, 139, 375.
85
6
7
B. Basu, S. Paul and A. K. Nanda, Green Chem., 2010, 12, 767.
(a) P. F. Ranken and B. G. McKinnie, J. Org. Chem., 1989, 54, 2985;
(b) P. Stanetty, H. Koller and M. Mihovilovic, J. Org. Chem., 1992,
57, 6833; (c) Y. Fort and A. L. Rodriguez, J. Org. Chem., 2003, 68,
4918; (d) S. A. Pratt, M. P. Goble, M. J. Mulvaney and P. G. M.
Wuts, Tetrahedron Lett., 2000, 41, 3559.
90
25
Scheme 3 Proposed reaction mechanism for the formation of 3.
8
9
(a) T. Kondo and T. Mitsudo, Chem. Rev., 2000, 100, 3205; (b) S. V.
Ley and A.W. Thomas, Angew. Chem., Int. Ed., 2003, 42, 5400; (c) C.
C. Eichman and J. P. Stambuli, Molecules, 2011, 16, 590; (d) H. Liu
and X. Jiang, Chem. Asian J., 2013, 8, 2546.
F. Luo, C. Pan, L. Li, F. Chen and J. Cheng, Chem. Commun., 2011,
47, 5304.
Conclusions
95
In conclusion, we developed the highly regioselective
paraꢀmethylthiolation/bridging methylenation of arylamines by
30 using DMSO as the methylthio or methylene source in the
presence of NH4I. A series of aryl methyl thioethers and
methyleneꢀbridged arylamines were synthesized via this very
simple procedure in moderate to good yields. The reaction was
applicable to various aromatic amine derivatives. The mild
35 reaction conditions and convenient operation provided possibility
for future research to apply this methodology in the synthesis of
pharmaceuticals and other useful compounds.
10 P. J. A. Joseph, S. Priyadarshini, M. L. Kantam and B. Sreedhar,
Tetrahedron, 2013, 69, 8276.
100
105
110
11 K. Ghosh, S. Ranjit and D. Mal, Tetrahedron Lett., 2015, 56, 5199.
12 E. JonesꢀMensah and J. Magolan, Tetrahedron Lett., 2014, 55, 5323.
13 (a) T. W. Lyons and M. S. Sanford, Chem. Rev., 2010, 110, 1147; (b)
X. X. Guo, D. W. Gu, Z. Wu and W. Zhang, Chem. Rev., 2015, 115,
1622; (c) C. Shen, P. Zhang, Q. Sun, S. Bai, T. S. A. Hor and X. Liu,
Chem. Soc. Rev., 2015, 44, 291.
14 (a) X. Chen, X. S. Hao, C. E. Goodhue and J. Q. Yu, J. Am. Chem.
Soc., 2006, 128, 6790; (b) L. Chu, X. Yue and F. L. Qing, Org. Lett.,
2010, 12, 1644; (c) P. Sharma, S. Rohilla and N. Jain, J. Org. Chem.,
2015, 80, 4116.
Acknowledgements
40 This work was supported by the National Natural Science
Foundation of China (Project 21272117) and the Priority
Academic Program Development of Jiangsu Higher Education
Institutions. The authors also thank Mr. Hailong Liu for the
15 (a) C. Dai, Z. Xu, F. Huang, Z. Yu and Y. F. Gao, J. Org. Chem.,
2012, 77, 4414; (b) S. M. Patil, S. Kulkarni, M. Mascarenhas, R.
Sharma, S. M. Roopan and A. Roychowdhury, Tetrahedron, 2013, 69,
This journal is © The Royal Society of Chemistry [year]
Journal Name, [year], [vol], 00–00
|
3