construction of five-membered rings through a 5-exo-trig
cyclization process, as it has been shown in the synthesis of
carbocyclic4 and heterocyclic compounds,5 even in a dia-
stereoselective6 or enantioselective fashion.7,8 However,
some limitations have precluded the general applicability of
this method. In fact, the above-cited examples consist of
intramolecular carbolithiations to five-membered rings and
it remains unclear whether cyclization to six-membered
cycles would provide the same degree of stereo- and
regiochemical efficiency. Only a few examples of 6-exo
cyclization process via intramolecular carbolithiations in-
volving alkyl or alkenyllithiums have been reported.9 Re-
garding aryllithiums, Pedrosa10 et al. have described the
synthesis of enantiopure 4-substituted tetrahydroisoquinolines
Via a diastereoselective 6-exo carbolithiation of unactivated
double bonds in chiral (-)-8-aminomenthol derived perhy-
dro-1,3-benzoxazines. Recently, we have also reported11 the
synthesis of the pyrrolo[1,2-b]isoquinoline system through
MesLi-mediated intramolecular carbolithiation reactions of
N-(o-iodobenzyl)pyrroles, though in our case the alkene is
required to be substituted with an electron withdrawing
group.
Scheme 1
.
Synthesis of N-Alkenyl Substituted o-Iodoanilines
2a,b and 3a,b
with different substitution patterns as internal electrophiles.
We have also examined the effect of bidentate ligands, such
as TMEDA and (-)-sparteine, in the stereoselectivity of these
carbolithiation reactions.
Therefore, in connection with our work12 on Parham-type
cyclizations,13 we decided to investigate the intramolecular
carbolithiation for the synthesis of 2,4-disubstituted tetrahy-
droquinolines. Herein we describe the cyclization of the
aryllithiums generated from N-alkenyl substituted o-iodoa-
nilines to the tetrahydroquinoline derivatives, using alkenes
To test the carbolithiation reactions, we first prepared the
N-alkenyl substituted o-iodoanilines 2 and 3 by standard
methodologies (Scheme 1). Condensation of o-iodoaniline
and benzaldehyde, followed by addition of allylmagnesium
chloride led to secondary amine 2a, which was alkylated
with LDA and MeI, thus affording amine 2b.14 Oxidative
cleavage of the alkene double bond with OsO4/NaIO4 led to
the corresponding aldehyde, whose in situ olefination was
was achieved via Wittig reaction with the corresponding
phosphorus ylides to afford N-alkenyl substituted o-iodoa-
nilines 3a,b15 in good overall yields (Scheme 1).
We first studied the carbolithiation reactions of o-iodoa-
niline 2a with t-BuLi (Table 1), starting under standard
conditions (2 equiv of RLi, THF, -78 °C). However,
although iodine-lithium occurred efficiently, since dehalo-
genated amine was always isolated (entries 1 and 2),
intramolecular carbolithiation did not take place. We next
tried the addition of a bidentate ligand as TMEDA, which
(3) (a) Wakefield, B. J. The Chemistry of Organolithium Compounds,
2nd ed.; Pergamon Pres: New York, 1990. (b) Rappoport, Z., Marek, I.,
Eds. The Chemistry of Organolithium Compounds; Patai Series: The
Chemistry of Functional Groups, Vol. 1; Rappoport, Z., Ed.; Wiley:
Chichester, 2004. (c) Gribble, G. W. In Science of Synthesis [Houben-Weyl
Methods of Molecular Trnasformations]; Majewski, M., Snieckus, V., Eds.;
Georg Thieme Verlag: Sttutgart; 2006; Vol. 8a, pp 357-426.
(4) (a) Ross, G. A.; Koppang, M. D.; Bartak, D. E.; Woolsey, N. F.
J. Am. Chem. Soc. 1985, 107, 6742–6743. (b) Harrowven, D. C. Tetrahedron
Lett. 1992, 33, 2879–2882. (c) Bailey, W. F.; Daskapan, T.; Rampalli, S.
J. Org. Chem. 2003, 68, 1334–1338.
(5) For some representative examples, see: Indoles: (a) Barluenga, J.;
Sanz, R.; Granados, A.; Fan˜ana´s, F. J. J. Am. Chem. Soc. 1998, 120, 4865–
4866. Indolines: (b) Bailey, W. F.; Jiang, X.-L. J. Org. Chem. 1996, 61,
2596–2597. (c) Zhang, D.; Liebskind, L. J. Org. Chem. 1996, 61, 2594–
2595. Azaindolines: (d) Bailey, W. F.; Salgaonkar, P. D.; Brubaker, J. D.;
Sharma, V. Org. Lett. 2008, 10, 1071–1074.
(6) (a) Bailey, W. F.; Mealy, M. J.; Wiberg, K. B. Org. Lett. 2002, 4,
791–794. (b) Fresigne´, C.; Girard, A.-L-; Durandetti, M.; Maddaluno, J.
Angew. Chem., Int. Ed. 2008, 41, 891–893. (c) Fresigne´, C.; Girard, A.-L.;
Durandetti, M.; Maddaluno, J. Chem.-Eur. J. 2008, 14, 5159–5167.
(7) (a) Comins, D. L.; Zhang, Y.-m. J. Am. Chem. Soc. 1996, 118,
12248–12249. (b) Nishiyama, H.; Sakata, N.; Sugimoto, H.; Motoyama,
(12) For representative examples of our synthetic work in this area, see:
(a) Ruiz, J.; Sotomayor, N.; Lete, E. Org. Lett. 2003, 5, 1115–1117. (b)
Osante, I.; Lete, E.; Sotomayor, N. Tetrahedron Lett. 2004, 45, 1253–1256.
(c) Gonza´lez-Temprano, I.; Osante, I.; Lete, E.; Sotomayor, N. J. Org. Chem.
2004, 69, 3875–3885. (d) Ruiz, J.; Ardeo, A.; Ignacio, R.; Sotomayor, N.;
Lete, E. Tetrahedron 2005, 61, 3311–3324. (e) Ruiz, J.; Sotomayor, N.;
Lete, E. Tetrahedron 2006, 62, 6182–6189. (f) Abdullah, M. N.; Arrasate,
S.; Lete, E.; Sotomayor, N. Tetrahedron 2007, 64, 1329–1332.
(13) For reviews, see: (a) Parham, W. E.; Bradsher, C. K. Acc. Chem.
Res. 1982, 15, 300–305. (b) Gray, M.; Tinkl, M.; Snieckus, V. In
ComprehensiVe Organometallic Chemistry II; Abel, E. W., Stone, F. G. A.,
Wilkinson, G., Eds.; Pergamon Press: Exeter, 1995; Vol. 11, pp 66-92.
(c) Ardeo, A.; Collado, M. I.; Osante, I.; Ruiz, J.; Sotomayor, N.; Lete, E.
In Targets in Heterocyclic Systems; Atanassi, O., Spinelli, D., Eds.; Italian
Society of Chemistry: Rome, 2001; Vol. 5, pp 393-418. (d) Sotomayor,
N.; Lete, E. Curr. Org. Chem. 2003, 7, 275–300. (e) Na´jera, C.; Sansano,
J. M.; Yus, M. Tetrahedron 2003, 59, 9255–9303. See also ref 1.
(14) All attempts to prepare 2b by quenching the addition reaction with
MeI failed.
Y.; Wakita, H.; Nagase, H. Synlett 1998, 930–932
.
(8) (a) Bailey, W. F.; Mealy, M. J. J. Am. Chem. Soc. 2000, 122, 6787–
6788. (b) Sanz, G.; Groth, U. M. J. Am. Chem. Soc. 2000, 122, 6789–
6790. (c) Barluenga, J.; Fan˜ana´s, F. J.; Sanz, R.; Marcos, C. Org. Lett.
2002, 4, 2225–2228. (d) Mealy, M. J.; Luderer, M. R.; Bailey, W. F.;
Sommer, M. B. J. Org. Chem. 2004, 69, 6042–6049. (e) Barluenga, J.;
Fan˜an´; as, F. J.; Sanz, R.; Marcos, C. Chem.-Eur. J. 2005, 11, 5397–
5407. (f) Groth, U.; Ko¨ttgen, P.; Langenbach, P.; Lindenmaier, A.; Schu¨tz,
T.; Wiegand, M. Synlett 2008, 1301–1304
.
(9) (a) Bailey, W. F.; Nurmi, T. T.; Patricia, J. J.; Wang, W. J. Am.
Chem. Soc. 1987, 109, 2442–2448. (b) Bailey, W. F.; Ovaska, T. V.
Tetrahedron Lett. 1990, 31, 627–630. (c) Coldham, I.; Vennall, G. P. Chem.
Commun. 2000, 1569–1570. (d) Ashweek, N. J.; Coldham, I.; Snowden,
D. J.; Vennall, G. P. Chem.-Eur. J. 2002, 8, 195–207.
(10) Pedrosa, R.; Andre´s, C.; Iglesias, J. M.; Pe´rez-Encabo, A. J. Am.
Chem. Soc. 2001, 123, 1817–1821.
(15) Attempts to introduce the electron withdrawing group directly on
2b by cross metatethesis with acryl amides in the presence of 1st and 2nd
generation Grubbs’ catalysts failed, leading only to dimeric product derived
from 2b. Besides, addition of functionalized allyl organomagnesium reagents
to imine 1 also faliled.
(11) Lage, S.; Villaluenga, I.; Sotomayor, N.; Lete, E. Synlett 2008,
3188–3192.
1238
Org. Lett., Vol. 11, No. 6, 2009