C. Xue et al. / Tetrahedron Letters 50 (2009) 853–856
855
O
O
.
O
N
O
O
O
O
O
N
O
TsOH H2O
toluene
OR
OR
100 °C, 2h
H3C(H2C)9
H3C(H2C)9
H3C(H2C)9
H3C(H2C)9
93.2%
4
Scheme 3.
O
O
O
1. [PhCH2N(CH3)3]+OH-
THF, 50°C, 10 h
H3C(H2C)9O
H3C(H2C)9O
O(CH2CH2O)3CH3
O(CH2CH2O)3CH3
CH3(OCH2CH2)3OH
+
1
2. CH3(OCH2CH2)3OTs
CH3CN, 50°C, 10 h
O
5
Scheme 4.
further converted to unsymmetric PDIs. The ability to access
unsymmetric PEIs, PTEs, and PDIs would enable molecular engi-
neering of complex organic functional systems having the electron
acceptor with tuneable electron affinity, which may lead to the
optimum optoelectronic performance.
Table 2
The first reduction potentials of perylene tetracarboxylic derivatives versus Fc/Fc+
Compound
E1 (V)
Compound
E1 (V)
1
2
4
5
6
ꢂ1.162
ꢂ1.589
ꢂ0.988
ꢂ1.568
ꢂ1.044
3a
3b
3c
3d
3e
3f
ꢂ1.311
ꢂ1.256
ꢂ1.255
ꢂ1.214
ꢂ1.333
ꢂ1.284
Acknowledgments
This research was financially supported by the 3M Non-tenured
Faculty grant and Petroleum Research Foundation. Partial support
from PSC-CUNY Research Award Program is also gratefully
acknowledged.
this transformation is supported by the high-yield reaction shown
in Scheme 3.
Supplementary data
Another unique application of 1 is that it can act as the precur-
sor of unsymmetric PTEs. The availability of 1 made it possible to
synthesize the first unsymmetrically substituted PTE 5, as outlined
in Scheme 4. The good overall yield (80%) signifies the effectiveness
of 1 as the precursor of unsymmetric PTEs.
Supplementary data (detailed experimental procedures, spec-
troscopic data and NMR spectra of final products) associated with
this article can be found, in the online version, at doi:10.1016/
Finally, electron-accepting powers of different perylene tetra-
carboxylic acid derivatives were examined electrochemically. Their
first reduction potential values are listed in Table 2. For the pur-
pose of comparison, the first reduction potential of PDI 65d with
the structure shown below was also measured. As expected, the
perylene monoimide monoanhydride 4 is more electron deficient
than 6, as the anhydride group is more electron withdrawing than
the imide group. For the same reason, the electron affinity of 1 is
greater than that of PEIs. The two PTEs, 2 and 5, are the least elec-
tron-deficient materials due to four least electron-withdrawing
ester groups. As expected, six PEIs exhibit intermediate electron
affinity between the PTEs and PDI 6. It is quite interesting to ob-
serve that the difference in first reduction potential values among
PEIs is as great as 0.119 V. Evidently, the availability of unsymmet-
ric PEIs and PTEs as PDI alternatives will allow one to tune the
acceptor electron affinity to a considerable degree, which may help
minimize the energy loss during the electron transfer from the
donor to the acceptor in an organic photovoltaic system.20
References and notes
1. (a) Langhals, H. Heterocycles 1995, 40, 477–500 and references cited therein; (b)
Langhals, H.; Jona, W.; Einsiedl, F.; Wohnlich, S. Adv. Mater. 1998, 10, 1022–
1024.
2. (a) Langhals, H.; Ismael, R.; Yürük, O. Tetrahedron 2000, 56, 5435–5441; (b)
Langhals, H.; Karolin, J.; Johansson, L. B. Å. J. Chem. Soc., Faraday Trans. 1998, 94,
2919–2922; (c) Rademacher, A.; Märkle, S.; Langhals, H. Chem. Ber. 1982, 115,
2927–2934.
3. (a) Peumans, P.; Uchida, S.; Forrest, S. R. Nature 2003, 158–162; (b) Hansel, H.;
Zettl, H.; Krausch, G.; Kisselev, R.; Thelakkat, M.; Schmidt, H. W. Adv. Mater.
2003, 15, 2056–2060; (c) Lindner, S. M.; Huettner, S.; Chiche, A.; Thelakkat, M.;
Krausch, G. Angew. Chem., Int. Ed. 2006, 45, 3364–3368.
4. (a) Horowitz, G.; Kouki, F.; Spearman, P.; Fichou, D.; Nogues, C.; Pan, X.;
Garnier, F. Adv. Mater. 1996, 8, 242–245; (b) Malenfant, P. R. L.;
Dimitrakopoulos, C. D.; Gelorme, J. D.; Kosbar, L. L.; Graham, T. O.; Curioni,
A.; Andreoni, W. Appl. Phys. Lett. 2002, 80, 2517–2519; (c) Huttner, S.; Sommer,
M.; Thelakkat, M. Appl. Phys. Lett. 2008, 92, 093302/1–093302/3.
5. (a) Cormier, R. A.; Gregg, B. A. J. Phys. Chem. B 1997, 101, 11004–11006; (b)
Struijk, C. W.; Sieval, A. B.; Dakhorst, J. E. J.; van Dijk, M.; Kimkes, P.; Koehorst,
R. B. M.; Donker, H.; Schaafsma, T. J.; Picken, S. J.; van de Craats, A. M.; Warman,
J. M.; Zuilhof, H.; Sudholter, E. J. R. J. Am. Chem. Soc. 2000, 122, 11057–11066;
(c) Würthner, F.; Thalacker, C.; Diele, S.; Tschierske, C. Chem. Eur. J. 2001, 7,
2245–2253; (d) Xu, Y. J.; Leng, S. W.; Xue, C. M.; Sun, R. K.; Pan, J.; Ford, J.; Jin, S.
Angew. Chem., Int. Ed. 2007, 46, 3896–3899.
6. (a) Würthner, F. Chem. Commun. 2004, 1564–1579. and references cited
therein; (b) Hoeben, F. J. M.; Jonkheijm, P.; Meijer, E. W.; Schenning, A. P. H. J.
Chem. Rev. 2005, 105, 1491–1546; (c) Yagai, S.; Monma, Y.; Kawauchi, N.;
Karatsu, T.; Kitamura, A. Org. Lett. 2007, 9, 1137–1140; (d) Li, X. Q.; Stepanenko,
V.; Chen, Z. J.; Prins, P.; Siebbeles, L. D. A.; Würthner, F. Chem. Commun. 2006,
3871–3873.
O
N
O
O
N
O
O
O(CH2)11CH3
H3C(H2C)11
O
O
6
In conclusion, we have designed and successfully synthesized a
soluble perylene tetracarboxylic monoanhydride diester. This com-
pound can serve as the versatile intermediate for the synthesis of
novel unsymmetrically substituted PTEs and PEIs which could be
7. Benning, S.; Kitzerow, H. S.; Bock, H.; Achard, M. F. Liq. Cryst. 2000, 27, 901–906.
8. (a) Yang, M. J.; Lu, S. L.; Li, Y. J. Mater. Sci. Lett. 2003, 22, 813–815; (b)
Hassheider, T.; Benning, S. A.; Lauhof, M. W.; Kitzerow, H. S.; Bock, H.; Watson,
M. D.; Muellen, K. Mol. Cryst. Liq. Cryst. 2004, 413, 2597–2608.