Highly Potent Inhibitors of Methionine Aminopeptidase-2.
Journal of Medicinal Chemistry, 2007, Vol. 50, No. 16 3785
vascular, rheumatoid and other disease. Nat. Med. 1995, 1, 27-31.
(d) Hanahan, D.; Folkman, J. Patterns and emerging mechanisms of
the angiogenic switch during tumorigenesis. Cell 1996, 86, 353-
364. (e) Risau, W. Mechanisms of angiogenesis. Nature 1997, 386,
671-674.
3231-3243. (b) Auge, F.; Hornebeck, W.; Decarme, M.; Laronze,
J.-Y. Improved gelatinase A selectivity by novel zinc binding groups
containing galardin derivatives. Bioorg. Med. Chem. Lett. 2003, 13,
1783-1786. (c) Wang, J.; Sheppard, G. S.; Lou, P.; Kawai, M.; Park,
C.; Egan, D.; Schneider, A.; Bouska, J.; Lesniewski, R.; Henkin, J.
Physiologically relevant metal cofactor for methionine aminopepti-
dase-2 is manganese. Biochemistry 2003, 42 (17), 5035-5042. (d)
Oefner, C.; Douangamath, A.; D’Arcy, A.; Hafeli, S.; Mareque, D.;
Sweeney, A. M.; Padilla, J.; Pierau, S.; Schulz, H.; Thormann, M.;
Wadman, S.; Dale, G. E. The 1.15 ANG. Crystal structure of the
Staphylococcus aureus methionyl-aminopeptidase and complexes
with triazole-based inhibitors. J. Mol. Biol. 2003, 332, 13-21. (e)
Garrabrant, T.; Tuman, R. W.; Ludovici, D.; Tominovich, R.;
Simoneax, R. L.; Galemmo, R. A.; Johnson, D. L. Small molecule
inhibitors of methionine aminopeptidase type 2 (MetAP-2). Angio-
genesis 2004, 7 (2), 91-96. (f) Kallander, L. S.; Lu, Q.; Chen, W.;
Tomaszek, T.; Yang, G.; Tew, D.; Meek, T. D.; Hofmann, G. A.;
Schulz-Pritchard, C. K.; Smith, W. W.; Janson, C. A.; Ryan, M. D.;
Zhang, G.-F.; Johanson, K. O.; Kirkpatrick, R. B.; Ho, T. F.; Fisher,
P. W.; Mattern, M. R.; Johnson, R. K.; Hansbury, M. J.; Winker, J.
D.; Ward, K. W.; Veber, D. F.; Thompson, S. K. 4-Aryl-1,2,3-
triazole: A novel template for a reversible methionine aminopeptidase
2 inhibitor, optimized to inhibit angiogenesis in ViVo. J. Med. Chem.
2005, 48 (18), 5644-5647.
(2) (a) Wingfield, P.; Graber, P.; Turcatti, G.; Movva, N. R.; Pelletier,
M.; Craig, S.; Rose, K.; Miller, C. G. Purification and characterization
of a methionine-specific aminopeptidase from Salmonella typhimu-
rium. Eur. J. Biochem. 1989, 180, 23-32. (b) Bazan, J. F.; Weaver,
L. H.; Roderick, S. L.; Huber, R.; Matthews, B. W. Sequence and
structure comparison suggest that methionine aminopeptidase, pro-
lidase, aminopeptidase, and creatinase share a common fold. Proc.
Natl Acad. Sci. U.S.A. 1994, 91, 2473-2477. (c) Kobayashi, M.;
Shimizu, S. Cobalt proteins. Eur. J. Biochem. 1999, 261, 1-9. (d)
Lowther, W. T.; Matthews, B. W. Structure and function of the
methionine aminopeptidase. Biochim. Biophys. Acta 2000, 1477,
157-167. (e) Yang, G.; Kirkpatrick, R. B.; Ho, T.; Zhang, G.; Liang,
P.; Johanson, K. O.; Casper, D. J.; Doyle, M. L.; Marino, J. P., Jr.;
Thompson, S. K.; Wenfang, C.; Tew, D. G.; Meek, T. D. Steady-
state kinetic characterization of substrates and metal-ion specificities
of the full-length and N-terminally truncated recombinant human
methionine aminopeptidases (type 2). Biochemistry 2001, 40, 10645-
10654.
(3) (a) Griffith, E. C.; Su, Z.; Turk, B. E.; Chen, S.; Chang, Y. H.; Wu,
Z.; Biemann, K.; Liu, J. O. Methionine aminopeptidase (type 2) is
the common target for angiogenesis inhibitors AGM-1470 and
ovalicin. Chem. Biol. 1997, 4 (6), 461-471. (b) Sin, N.; Meng, L.;
Wang, M. Q.; Wen, J. J.; Bornmann, W. G.; Crews, C. M. The anti-
angiogenic agent fumagillin covalently binds and inhibits the
methionine aminopeptidase, MetAP-2. Proc. Natl. Acad. Sci. U.S.A.
1997, 1094 (12), 6099-6103. (c) Griffith, E. C.; Shuang, S.;
Niwayama, S.; Ramsay, C. A.; Chang, Y.; Liu, J. O. Molecular
recognition of angiogenesis inhibitors fumagillin and ovalicin by
methionine aminopeptidase 2. Proc. Natl. Acad. Sci. U.S.A. 1998,
95, 15183-15188. (d) Turk, B. E.; Griffith, E. C.; Wolf, S.; Biemann,
K.; Chang, Y.; Liu, J. O. Selective inhibition of amino-terminal
methionine processing by TNP-470 and ovalicin in endothelial cells.
Chem. Biol. 1999, 6 (11), 823-833. (e) Bernier, S. G.; Taghizadeh,
N.; Thompson, C. D.; Westlin, W. F.; Hannig, G. Methionine
aminopeptidase type I and type II are essential to control cell
proliferation. J. Cell. Biochem. 2005, 95 (6), 1191-1203.
(4) (a) Chang, S. Y.; McGary, E. C.; Chang, S. Methionine aminopep-
tidase gene Escherichia is essential for cell growth. J. Bacteriol. 1989,
171, 4071-4072. (b) Folkman, J. Clinical applications of research
on angiogenesis. New Engl. J. Med. 1995, 333, 1757-1763. (c) Li,
X.; Chang, Y. H. Amino-terminal protein processing in Saccharo-
myces cerevisiae is an essential function that requires two distinct
methionine aminopeptidases. Proc. Natl. Acad. Sci. U.S.A. 1995, 92,
12357-12361. (d) Hannig, G.; Lazarus, D. D.; Bernier, S. G.; Karp,
R. M.; Lorusso, J.; Qiu, D.; Labenski, M. T.; Wakefield, J. D.;
Thompson, C. D.; Westlin, W. F. Inhibition of melanoma tumor
growth by a pharmacological inhibitor of MetAP-2, PPI-2458. Intl.
J. of Oncology 2006, 28 (4), 955-963.
(5) (a) Keding, S. J; Dales, N. A.; Lim, S.; Beaulieu, D.; Rich, D. H.
Synthesis of (3R)-amino-(2S)-hydroxy amino acids for inhibition of
methionine aminopeptidase-1. Synth. Commun. 1998, 28 (23), 4463-
4470. (b) Sheppard, G. S.; Wang, J.; Kawai, M.; BaMaung, N.; Craig,
R. A.; Erickson, S. A.; Lynch, L.; Patel, J.; Yang, F.; Searle, X. B.;
Lou, P.; Park, C.; Kim, K. H.; Henkin, J.; Lesniewski, R. 3-Amino-
2-hydroxyamides and related compounds as inhibitors of methionine
aminopeptidase-2. Bioorg. Med. Chem. Lett. 2004, 14 (4), 865-868.
(c) Kawai, M.; BaMaung, S. D.; Fidanze, S. A.; Erickson, S. A.;
Tedrow, J. S.; Sanders, W. J.; Vasudevan, A.; Park, C.; Hutchins,
C.; Comess, K. M.; Kalvin, D.; Wang, J.; Zhang, Q.; Lou, P.; Tucker-
Garcia, L.; Bouska, J.; Bell, R. L.; Lesniewski, R.; Henkin, J.;
Sheppard, G. S. Development of sulfonamide compounds as potent
methionine aminopeptidase type II inhibitors with antiproliferative
properties. Biorg. Med. Chem. Lett. 2006, 16 (13), 3574-3577.
(6) Ye, Q-Z.; Xie, S-X.; Ma, Z-Q.; Huang, M.; Hanzlik, R. P. Structural
basis for catalysis by monometalated methionine aminopeptidase.
Proc. Natl. Acad. Sci. U.S.A. 2006, 103 (25), 9470-9475.
(8) Kurzer, F.; Douraghi-Zadeh, K. Heterocyclic compounds from urea
derivatives. VI. Synthesis and cyclization of 1-amino-3-(N,N′-
diarylamidino)guanidines and some analogs. J. Chem. Soc. C 1965,
932-937.
(9) Davidson, J. S. Action of hydrazine hydrate on isodithiobiurets. J.
Chem. Soc. C 1967, 2471-2472.
(10) Joshua, C. P.; Presannan, E.; Thomas, S. K. A one-step synthesis of
1,5-disubstituted 2,4-dithiobiurets and their oxidation to 3,5-di-
(substituted imino)-1,2,4-dithiazolidines. Indian J. Chem., Sect. B
1982, 21 (7), 649-651.
(11) (a) Whitten, J. P.; Matthews, D. P.; McCarthy, J. R. [2-(Trimethyl-
silyl)ethoxy]methyl (SEM) as a novel and effective imidazole and
fused aromatic imidazole protecting group. J. Org. Chem. 1986, 51
(10), 1891-1894. (b) Lipshutz, B. H.; Huff, B.; Hagen, W.
Metalations of imidazoles. (Poly)functionalization and conversions
to imidazolones. Tetrahedron Lett. 1988, 29 (28), 3411-3414.
(12) Bell, A. S.; Roberts, D. A.; Ruddock, K. S. A synthesis of 2- and
4(5)-(2-pyridinyl)imidazoles by palladium-catalyzed cross-coupling
reactions. Tetrahedron Lett. 1988, 29 (39), 5013-5016.
(13) (a) Liu, S.; Widom, J.; Kemp, C. W.; Crews, C. M.; Clardy, J.
Structure of human methionine aminopeptidase-2 complexed with
fumagillin. Science 1998, 282, 1324-1327. (b) Lowther, W. T.;
Orville, A. M.; Madden, D. T.; Lim, S.; Rich, D. H.; Matthews, B.
W. Escherichia coli methionine aminopeptidase: Implications of
crystallographic analyses of the native, mutant, and inhibited enzymes
for the mechanism of catalysis. Biochemistry 1999, 38, 7678-7688.
(14) Scudiero, D. A.; Shoemaker, R. H., Paull, K. D.; Monks, A.; Tierney,
S.; Nofziger, T. H.; Currens, M. J.; Seniff, D.; Boyd, M. R. Evaluation
of a soluble tetrazolium/formazan assay for cell growth and drug
sensitivity in culture using human and other tumor cell lines. Cancer
Res. 1988, 48 (17), 4827-4833.
(15) Walker, K. W.; Bradshaw, R. A. Yeast methionine aminopeptidase
1 can utilize either Zn2+ or Co2+ as a cofactor: A case of mistaken
identity? Protein Sci. 1998, 7, 2684-2687.
(16) (a) Gho, Y. S.; Kleinman, H. K.; Sosne, G. Angiogenic activity of
human soluble intercellular adhesion molecule-1. Cancer Res. 1999,
59 (20), 5128-5132. (b) Ponce, M. L.; Nomizu, M.; Delgado, M.
C.; Kuratomi, Y.; Hoffman, M. P.; Powell, S.; Yamada, Y.; Kleinman,
H. K.; Malinda, K. M. Identification of endothelial cell binding sites
on the laminin γ1 chain. Circ. Res. 1999, 84 (6), 688-694.
(17) (a) Cleland, W. W. The kinetics of enzyme-catalyzed reactions with
two or more substrates or products. I. Nomenclature and rate
equations. Biochim. Biophys. Acta 1963, 67, 104-137. (b) Cleland,
W. W. The kinetics of enzyme-catalyzed reactions with two or more
substrates or products. II. Inhibitionsnomenclature and theory.
Biochim. Biophys. Acta 1963, 67, 173-187. (c) Cleland, W. W. The
kinetics of enzyme-catalyzed reactions with two or more substrates
or products. III. Prediction of initial velocity and inhibition patterns
by inspection. Biochim. Biophys. Acta 1963, 67, 188-196.
(7) (a) Schroder, J.; Henke, A.; Wenzel, H.; Brandstetter, H.; Stammler,
H. G.; Stammler, A.; Pfeiffer, W. D.; Tschesche, H. Structure-based
design and synthesis of potent matrix metalloproteinase inhibitors
derived from 6H-1,3,4-thiadiazine scaffold. J. Med. Chem. 2001, 44,
JM061182W