C. Spencer et al. / Tetrahedron Letters 50 (2009) 1010–1012
1011
Table 1
Table 2
p-TsOHÁH2O deprotection of secondary trifluoroacetamides13,14
p-TsOHÁH2O deprotection of tertiary trifluoroacetamides13,14
R1
N
R1
N
H2
N
p-TsOH H2O, MeOH
H3N
p-TsOH H2O, MeOH
R1
TsO
CF3
CF3
R2
R1
TsO
H
R2
O
O
Entry Starting material
Product
Isolated yield (%)
Entry Starting material
Product
Isolated yield
(%)
F
F
H
NH3
TsO
1
2
3
4
5
6
86
N
CF3
N
H2
N
N
N
O
2
1
81
N
CF3
N
N
N
TsO
O
NH3
TsO
N
8
O
O
96
99
86
94
92
N
H
CF3
3
H2
N
H
N
N
N
CF3
NH3
N
N
N
N
2
3
4
87
77
88
CF3
N
N
TsO
TsO
N
N
TsO
TsO
O
O
4
9
H2
N
NH3
N
CF3
N
N
N
H
CF3
CF3
5
N
N
H
N
O
N
10
NH3
N
N
N
N
TsO
NH3
O
6
H2
N
S
N
H
N
S
N
S
S
N
O
CF3
CF3
N
N
TsO
TsO
N
11
N
N
N
N
O
7
were filtered, washed with MTBE, and dried under vacuum at 20 °C. Yield of 2
was 86%. 1H NMR (CDCl3, 400 MHz) d 1.47 (d, J = 6.8 Hz, 3H), 2.28 (s, 3H), 4.56
(q, J = 6.8 Hz, 1H), 7.11 (d, J = 8.0 Hz, 2H), 7.49 (d, J = 8.0 Hz, 2H), 7.60 (dd,
J1 = 4.4 Hz, J2 = 8.7 Hz, 1H), 7.81 (td, J1 = 3.0 Hz, J2 = 8.7 Hz, 1H), 8.34 (b, 3H),
8.60 (d, J = 2.9 Hz, 1H); 13C NMR (CDCl3, 100 MHz) d 20.3, 21.1, 50.2, 123.7 (d,
J = 10 Hz), 124.8 (d, J = 20 Hz), 125.9, 128.5, 137.3 d, J = 30 Hz), 138.3, 145.6,
154.2 (d, J = 10 Hz), 159.2 (d, J = 250 Hz).
followed by the addition of iPrOAc to crystallize the desired prod-
ucts in 77–88% yield.
In summary, a practical non-aqueous cleavage of trifluoroaceta-
mides with p-TsOHÁH2O in methanol has been developed to afford
tosylate salts that can be isolated directly from the reaction mix-
ture. By avoiding an aqueous workup, the reactions are much more
efficient and amenable to large scale work. This method can be ap-
plied to both secondary and tertiary trifluoroacetamides with good
isolated yields.
14. All compounds isolated gave consistent 1H NMR, 13C NMR, and GCMS or LCMS
data. 3: 1H NMR (DMSO-d6, 500 MHz) d 2.29 (s, 3H), 4.20–4.23 (d, J = 5.6 Hz,
2H), 7.13–7.11 (d, J = 7.9 Hz, 2H), 7.43–7.52 (m, 4H), 7.88–7.92 (dt, J = 7.7 Hz,
J = 1.6 Hz, 1H), 8.29 (b, 3H), 8.63–8.64 (d, J = 4.6 Hz, 1H); 13C NMR (DMSO-d6,
125 MHz)
d 20.76, 42.56, 122.72, 123.53, 125.47, 128.07, 137.63, 137.74,
145.45, 148.58, 152.91.
Compound 4: 1H NMR (DMSO-d6, 500 MHz) d 2.28 (s, 3H), 6.82–6.85 (dt,
J1 = 7.1 Hz, J2 = 1 Hz, 1H), 7.01–7.03 (d, J = 9.0, 1H), 7.14–7.16 (d, J = 8.0 Hz, 2H),
7.57–7.56 (d, J = 8.0 Hz, 2H), 7.89–7.93 (m, 2H), 8.09 (b, 2H), 13.43 (b, 1H); 13C
NMR (DMSO-d6, 125 MHz) d 20.77, 112.13, 113.50, 125.47, 128.31, 135.84,
138.36, 144.11, 144.63, 153.99.
References and notes
1. Greene, T. W.; Wuts, P. G. M. Protective Groups in Organic Synthesis, 3rd ed.; John
Wiley & Sons, 1999.
2. Moussa, Z.; Romo, D. Synlett 2006, 3294.
3. Ding, H.; Friestad, G. K. Org. Lett. 2004, 6, 637.
4. Bergeron, R. J.; McManis, J. J. J. Org. Chem. 1988, 53, 3108.
5. Newman, H. J. Org. Chem. 1965, 30, 1287.
6. Quick, J.; Meltz, C. J. Org. Chem. 1979, 44, 573.
7. Schwartz, M. A.; Rose, B. F.; Vishnuvajjala, B. J. Am. Chem. Soc. 1973, 95, 612.
8. Imazawa, M.; Eckstein, F. J. Org. Chem. 1979, 44, 2039.
Compound 5: 1H NMR (DMSO-d6, 500 MHz) d 2.28 (s, 6H), 6.30 (b, 2H), 7.14–
7.12 (d, J = 8.0 Hz, 2H), 7.53–7.55 (dd, J1 = 6.6 Hz, J2 = 1.5 Hz, 2H), 7.59–7.58 (d,
J = 5.7 Hz, 1H), 7.97–7.95 (d, J = 5.7 Hz, 1 Hz), 8.04 (s, 1H), 14.81 (b, 1H); 13C
NMR (DMSO-d6, 125 MHz) d 18.26, 21.26, 124.54, 125.98, 127.84 128.22,
128.69, 138.52, 140.23, 145.64, 146.92.
Compound 6: 1H NMR (DMSO-d6, 500 MHz) d 2.29 (s, 3H), 7.13–7.11 (dd,
J1 = 10.4 Hz, J2 = 0.9 Hz, 2H), 7.47–7.50 (dd, J1 = 10.1 Hz, J2 = 2.1 Hz, 2H), 7.81–
7.82 (d, J = 4.2 Hz, 1H), 7.92–7.93 (dd, J1 = 3.4 Hz, J2 = 1.3 Hz, 1H), 8.18–8.19 (d,
J = 1.7 Hz, 1H); 13C NMR (DMSO-d6, 125 MHz) d 2.74, 125.45, 128.18, 129.18,
132.48, 137.42, 138.07, 144.94, 150.76.
9. Weygand, F.; Swodenk, W. Chem. Ber. 1957, 90, 639.
10. An alternative approach to avoid aqueous workup by trapping the amine
product with an acidic resin has been described: Liu, Y.-S.; Zhao, C.;
Bergbreiter, D. E.; Romo, D. J. Org. Chem. 1998, 63, 3471.
Compound 7: 1H NMR (DMSO-d6, 500 MHz) d 1.33 (s, 9H), 2.29 (s, 3H), 7.13–
7.14 (d, J = 7.7 Hz, 2H), 7.52–7.50 (d, J = 8.2 Hz, 2H); 13C NMR (DMSO-d6,
125 MHz) d 20.75, 29.40, 36.06, 125.47, 128.14, 137.97, 145.11, 167.85, 169.51.
Compound 8: 1H NMR (DMSO-d6, 500 MHz) d 2.28 (s, 3H), 5.45 (s, 2H), 6.95–
6.98 (dt, J1 = 6.9 Hz, J2 = 1.1 Hz, 1H), 7.13–7.10 (m, 3H), 7.25–7.23 (d, J = 7.1 Hz,
2H), 7.43–7.37 (m, 3H), 7.49–7.48 (d, J = 8.0 Hz, 2H), 7.94–7.91 (dt, J1 = 8.5 Hz,
J2 = 1.2 Hz, 1H), 8.16–8.15 (d, J = 6.1 Hz, 1H), 8.49 (b, 2H); 13C NMR (DMSO-d6,
11. King, S. B.; Ganem, B. J. Am. Chem. Soc. 1994, 116, 562.
12. Fukuyama, T.; Jow, C.-K.; Cheung, M. Tetrahedron Lett. 1995, 36, 6373.
13. Typical deprotection procedure: Trifluoroacetamide 1 was dissolved in MeOH
(5 mL/g trifluoroacetamide). p-TsOHÁH2O (1 equiv) was added and the
resulting solution was heated to ꢀ65 °C and aged at that temperature until
HPLC or TLC showed complete reaction. The reaction mixture was then cooled
to 20 °C, and MTBE (10 mL/g trifluoroacetamide) was added over 1 h. The
slurry was aged for 1 h at 20 °C, then cooled to 5 °C, and held for 1 h. The solids
125 MHz)
d 20.72, 55.08, 113.22, 115.26, 125.44, 127.28, 128.00, 128.38,
128.92, 133.28, 137.56, 140.05, 142.62, 145.69, 153.98.