84
C. H. Cho et al.
LETTER
(12) Saunders, B. C.; Stacey, G. T.; Wild, F.; Wiling, I. G. E.
Acknowledgment
J. Chem. Soc. 1948, 699.
We are grateful to the Korea Science and Engineering Foundation
(KOSEF) (R01-2007-000-21315-0) and BK 21 program for finan-
cial support.
(13) (a) Shi, E.; Pei, C. Synth. Commun. 2005, 35, 669. (b) Shi,
E.; Pei, C. Synthesis 2004, 2995. (c) Shi, E.; Pei, C. Synth.
Commun. 2004, 34, 1285. (d) Shi, E.; Pei, C. Phosphorus,
Sulfur Silicon Relat. Elem. 2003, 178, 1093.
(14) Coskran, K. J.; Jones, C. E. Inorg. Chem. 1971, 10, 1536.
(15) For reviews, see: (a) Baguley, P. A.; Walton, J. C. Angew.
Chem. Int. Ed. 1998, 37, 3072. (b) Studer, A.; Amrein, S.
Synthesis 2002, 835. (c) Quiclet-Sire, B.; Zard, S. Z. Chem.
Eur. J. 2006, 12, 6002.
References and Notes
(1) (a) Clive, D. L. J.; Kang, S. Tetrahedron Lett. 2000, 41,
1315. (b) Clive, D. L. J.; Kang, S. J. Org. Chem. 2001, 66,
6083.
(16) (a) Barton, D. H. R.; Jang, D. O.; Jaszberenyi, J. C.
Tetrahedron Lett. 1992, 33, 5709. (b) Barton, D. H. R.;
Jang, D. O.; Jaszberenyi, J. C. J. Org. Chem. 1993, 58,
6838. (c) Graham, S. R.; Murphy, J. A.; Coates, D.
Tetrahedron Lett. 1999, 40, 2415. (d) Martin, C. G.;
Murphy, J. A.; Smith, C. R. Tetrahedron Lett. 2000, 41,
1833. (e) Jang, D. O.; Cho, D. H.; Chung, C.-M. Synlett
2001, 1923.
(2) Ouvry, G.; Quiclet-Sire, B.; Zard, S. Z. Angew. Chem. Int.
Ed. 2006, 45, 5002.
(3) (a) Leca, D.; Fensterbank, L.; Lacote, E.; Malacria, M.
Angew. Chem. Int. Ed. 2004, 43, 4220. (b) Leca, D.;
Fensterbank, L.; Lacote, E.; Malacria, M. Chem. Soc. Rev.
2005, 34, 858.
(4) (a) Kim, S.; Cho, C. H.; Lim, C. J. J. Am. Chem. Soc. 2003,
125, 9574. (b) Cho, C. H.; Kim, S.; Yamane, M.; Miyauchi,
H.; Narasaka, K. Bull. Chem. Soc. Jpn. 2005, 78, 1665.
(c) Cho, C. H.; Kim, S. Can. J. Chem. 2005, 83, 917.
(5) (a) Scott, A. I.; Kang, K. J. Am. Chem. Soc. 1977, 99, 1997.
(b) Wollowitz, S.; Halpern, J. J. Am. Chem. Soc. 1988, 110,
3112. (c) Dowd, P.; Wilk, B.; Wilk, B. K. J. Am. Chem. Soc.
1992, 114, 7949. (d) Kim, S.; Jon, S. Y. Chem. Commun.
1996, 1335.
(6) (a) Curran, D. P.; Diederichsen, U.; Palovich, M. J. Am.
Chem. Soc. 1997, 119, 4797. (b) Curran, D. P.; Palovich, M.
Synlett 1992, 631. (c) Curran, D. P.; Liu, H. J. Org. Chem.
1991, 56, 3463. (d) Kiyooka, S.; Kaneko, Y.; Matsue, H.;
Hamada, M.; Fujiyama, R. J. Org. Chem. 1990, 55, 5562.
(7) Kim, S.; Cheong, J. H. Chem. Commun. 1998, 1143.
(8) (a) Scott, F. L.; Riordan, R.; Morton, P. D. J. Org. Chem.
1962, 27, 4255. (b) Shioiri, T.; Ninomiya, K.; Yamada, S.
J. Am. Chem. Soc. 1972, 94, 6203. (c) Yamada, S.;
Ninomiya, K.; Shioiri, T. Tetrahedron Lett. 1973, 14, 2343.
(9) (a) Ollivier, C.; Renaud, P. J. Am. Chem. Soc. 2000, 122,
6496. (b) Ollivier, C.; Renaud, P. J. Am. Chem. Soc. 2001,
123, 4717. (c) Masterson, D. S.; Porter, N. A. Org. Lett.
2002, 4, 4253. (d) Panchaud, P.; Chabaud, L.; Landais, Y.;
Ollivier, C.; Renaud, P.; Zigmantas, S. Chem. Eur. J. 2004,
10, 3606.
(17) Typical Procedure for Radical Cyanation
Photochemical Conditions A
A dry benzene solution (2 mL) of 4-phenoxybutyl iodide (2,
55 mg, 0.2 mmol), diethylphosphoryl cyanide (3, 90 mL, 0.6
mmol), and hexamethylditin (79 mg, 0.24 mmol) in a quartz
tube was degassed with nitrogen for 10 min and then
irradiated at 300 nm in Rayonet photochemical reactor for 12
h. The solvent was evaporated under reduced pressure, and
the residue was separated by a silica gel column
chromatography using EtOAc and n-hexane (1:5) as eluant
to give 4-phenoxybutyl cyanide (28 mg, 80%).11d MW
(C11H13NO): 175.23. 1H NMR (400 MHz, CDCl3): d = 1.85–
1.95 (m, 4 H), 2.41–2.45 (t, J = 6.7 Hz, 2 H), 3.98–4.00 (t,
J = 5.7 Hz, 2 H), 6.85–6.92 (d, J = 5.6 Hz, 2 H), 6.93–6.95
(t, J = 7.3 Hz, 1 H), 7.23–7.28 (m, 2 H). 13C NMR (100
MHz, CDCl3): d = 16.6, 22.0, 27.8, 66.0, 113.9, 119.0,
120.4, 129.0, 158.2. IR (polymer): 2927, 1601, 1586, 1497,
1474, 1247, 757, 693 cm–1. HRMS: m/z calcd for C11H13NO
[M+]: 175.0997; found: 175.0998.
Thermal Conditions B
A solution of 2 (110 mg, 0.4 mmol), 3 (180 mL, 1.2 mmol),
and DLP (31 mg, 0.08 mmol) in chlorobenzene (4 mL) was
degassed with nitrogen for 10 min, and then the solution was
heated at 110 °C under nitrogen for 24 h. The solvent was
evaporated under reduced pressure, and the residue was
separated by a silica gel column chromatography using
EtOAc and n-hexane (1:5) as eluant to give 4-phenoxybutyl
cyanide (35 mg, 50%) with recovery of 2 (22 mg, 20%).
(10) (a) Renaud, P.; Ollivier, C.; Panchaud, P. Angew. Chem. Int.
Ed. 2002, 69, 3460. (b) Panchaud, P.; Ollivier, C.; Renaud,
P.; Zigmantas, S. J. Org. Chem. 2004, 69, 2755.
(11) (a) Fang, J.-M.; Chen, M.-Y. Tetrahedron Lett. 1987, 28,
2853. (b) Barton, D. H. R.; Jaszberenyi, J. C.; Theodorakis,
E. A. Tetrahedron 1992, 48, 2613. (c) Kim, S.; Song, H. J.
Synlett 2002, 2110. (d) Kim, S.; Lim, C. J. Angew. Chem.
Int. Ed. 2002, 41, 3265. (e) Schaffner, A.; Darnency, V.;
Renaud, P. Angew. Chem. Int. Ed. 2006, 45, 5847.
Synlett 2009, No. 1, 81–84 © Thieme Stuttgart · New York