among the reported methods, it is realized that generally good
enantioselectivity of the organocatalytic conjugate addition
processes are limited only to cyclic enones.10 Jørgensen11a
and Ley11b independently reported chiral pyrrolidine tetrazole
promoted the addition of 2-nitropropane to acyclic enone
with moderate to good enantioselectivity (70-89% ee). Soo´s
and co-workers described a cinchona alkaloid-derived thio-
urea catalyzed addition of nitromethane with high enanti-
oselectivity.12 Nevertheless, the method only applied for
chalcones as Michael acceptors. More recently, Liang, Ye
and co-workers disclosed an improved protocol and 73-86%
ee were obtained.13
reactions.14 However, their reactivity and selectivity toward
a reaction are strongly substrate-dependent. In some cases,
the subtle changes in the structure of a catalyst can sometimes
significantly improve catalytic activity and stereocontrol.
Accordingly, our attempts to identify an effective catalyst
for conjugate addition of nitromethane (1) to 4-phenylbut-
3-en-2-one (2a) were carried out in the presence of an
organocatalyst (15 mol %) in chloroform at rt (Figure 1).
Clearly, improving the enantioselectivity to a useful level
(g90% ee) of the conjugate addition of nitromethane to
acyclic enones is an important, but currently unmet goal.
Recently, we have initiated an effort on tackling the
challenging issue. Herein, we wish to report the results of
the investigation, which has led to a new simple primary
amine thiourea catalyzed highly enantioselective conjugate
addition of nitromethane to acyclic enones. Notably, high
to excellent (92-99%) enantioselectivities are achieved and
a wide array of R,ꢀ-unsaturated ketones can be exploited
for the process.
Figure 1. Structures of screened organocatalysts.
trans-Cyclohexane diamine derived bifunctional catalysts
have proved to be valuable promoters in Michel addition
(5) For selected examples of organocatalytic asymmetric Michael
additions of stabilized carbanions, see: Nitroalkanes: (a) Li, H.; Wang, Y.;
Tang, T.; Deng, L. J. Am. Chem. Soc. 2004, 126, 9906. (b) Okino, T.;
Hoashi, Y.; Furukawa, T.; Xu, X; Takemoto, Y. J. Am. Chem. Soc. 2005,
127, 119. (c) Ye, J.; Dixon, D. J.; Hynes, P. S. Chem. Commun. 2005,
4481. Ketoesters: (d) Berkessel, A.; Cleemann, F.; Mukherjee, S. Angew.
Chem., Int. Ed. 2006, 45, 947. Diketones: (e) Zu, L.; Wang, W.; Wang, J.;
Li, H.; Duan, W.-H. Org. Lett. 2005, 7, 4713. (f) Malerich, J. P.; Hagihara,
K.; Rawal, V. H. J. Am. Chem. Soc. 2008, 130, 14416. Nitroesters: (g)
Raheem, I. T.; Goodman, S. N.; Jacobsen, E. N. J. Am. Chem. Soc. 2004,
126, 706. Dinitriles: (h) Hoashi, Y.; Okino, T.; Takemoto, Y. Angew. Chem.,
Int. Ed. 2005, 44, 4032. Malonates: (i) Li, P.; Wen, S.; Yu, F.; Liu, Q.; Li,
W.; Wang, Y.; Liang, S.; Ye, J. Org. Lett. 2009, 11, 753.
Widely used Takemoto’s catalysts I and II failed to promote
the process (Table 1, entries 1 and 2).15 Pyrrolidinesulfona-
Table 1. Asymmetric Michael Addition of Nitromethane (1) to
4-Phenylbut-3-en-2-one (2a)a
(6) (a) Cheruku, S. R.; Padmanilayam, M. P.; Vennerstrom, J. L.
Tetrahedron Lett. 2003, 44, 3701. (b) Halland, N.; Hazell, R. G.; Jørgensen,
K. A. J. Org. Chem. 2002, 67, 8331. (c) List, B.; Pojarliev, P.; Martin,
H. J. Org. Lett. 2001, 3, 2423.
entry
cat.
% yieldb
% eec
(7) Sil, D.; Sharon, A.; Maulikb, P. R.; Rama, V. J. Tetrahedron Lett.
2004, 45, 6273.
1
2
3
4
5
6
7
I
II
III
IV
V
0
0
NDd
NDd
58
59
37
(8) (a) Ballini, R.; Barboni, L.; Bosica, G.; Fiorini, D. Synthesis 2002,
2725. (b) Ballini, R. Synthesis 1993, 687.
(9) (a) Jiang, X.; Zhang, Y.; Chan, A. S. C.; Wang, R. Org. Lett. 2008,
11, 153. (b) Zhu, S. L.; Yu, S. Y.; Ma, D. W. Angew. Chem., Int. Ed.
2008, 47, 545. (c) Foresti, E.; Palmieri, G.; Petrini, M.; Profeta, R. Org.
Biomol. Chem. 2003, 1, 4275.
60
76
52
36
57
(10) (a) Hanessian, S.; Pham, V. Org. Lett. 2000, 2, 2975. (b) Tsogoeva,
S. B.; Jagtap, S. B.; Ardemasova, Z. A.; Kalikhevich, V. N. Eur. J. Org.
Chem. 2004, 4041. (c) Ooi, T.; Takada, S.; Fujioka, S.; Maruoka, K. Org.
Lett. 2005, 7, 5143. (d) Tsogoeva, S. B.; Jagtap, S. B.; Ardemasova, Z. A.
Tetrahedron: Asymmetry 2006, 17, 989. (e) Hanessian, S.; Shao, Z.; Warrier,
J. S. Org. Lett. 2006, 8, 4787. (f) Malmgren, M.; Granander, J.; Amedjkouh,
M. Tetrahedron: Asymmetry 2008, 19, 1934. (g) Szanto, G.; Bombicz, P.;
Grun, A.; Kadas, I. Chirality 2008, 20, 1120. (h) Suresh, P.; Pitchumani,
K. Tetrahedron: Asymmetry 2008, 19, 2037. For related selected examples
of organocatalytic addition of nitromethane to enals, see: (i) Palomo, C.;
Landa, A.; Mielgo, A.; Oiarbide, M.; Puente, A.; Vera, S. Angew. Chem.,
Int. Ed. 2007, 46, 8431. (j) Gotoh, H.; Ishikawa, H.; Hayashi, Y. Org. Lett.
2007, 9, 5307. (k) Zu, L.-S.; Xie, H.-X.; Li, H.; Wang, J.; Wang, W. AdV.
Synth. Catal. 2007, 349, 2660.
VI
VII
93
97
a Teaction was carried out with 0.1 mmol 2a and nitromethane (0.1
mL) in the presence of 15 mol % an organocatalyst in 0.2 mL of CHCl3 at
rt for 5 d. b Isolated yields. c Determined by HPLC analysis (Chirapak AS-H
column). d Not determined.
mide (III), first developed in our laboratory, displayed an
encouraging result (entry 3).16 It is well established that
thioureas with capability of affording two H-bonds generally
(11) (a) Prieto, A.; Halland, N.; Jørgensen, K. A. Org. Lett. 2005, 7,
3897, and ref 5b(b) Mitchell, C. E. T.; Brenner, S. E.; Ley, S. V. Chem.
Commun. 2005, 5346. (c) Mitchell, C. E. T.; Brenner, S. E.; Garc´ıa-Fortanet,
J.; Ley, S. V. Org. Biomol. Chem. 2006, 4, 2039.
(14) For a review, see: Taylor, M. S.; Jacobsen, E. N. Angew. Chem.,
Int. Ed. 2006, 45, 1520. and cited references therein.
(15) Okino, T.; Hoashi, Y.; Takemoto, Y. J. Am. Chem. Soc. 2003, 125,
12672.
(12) Vakulya, B.; Varga, S.; Csa´mpai, A.; Soo´s, T. Org. Lett. 2005, 7,
1967.
(13) Liang, X.; Ye, J.; Li, P.; Wang, Y. Chem. Commun. 2008, 3302.
(16) Wang, W.; Wang, J.; Li, H. Angew. Chem., Int. Ed. 2005, 44, 1369.
Org. Lett., Vol. 11, No. 13, 2009
2865