phenanthridinones from N-methoxy benzamides with
aryl iodides or arylboronic acids via dual CꢀH bond
activations (Scheme 1).4
Scheme 1. Approaches for Synthesis of Phenanthridinones
through CꢀH Bond Activation
Figure 1. Naturally occurring phenanthridone-based natural
products.
aminobiaryls with [60]fullerene through Pd(II)-catalyzed
CꢀH bond activation that afforded [60]fulleroisoquino-
linones and [60]fulleroazepines, respectively.9 There are a
number of strategies through which phenanthridines10
and carbazoles11 have been synthesized from 2-amino-
biaryl systems; however, insertion of CO for making
phenanthridinones has yet to be explored further. We
anticipated that if the C60 in our previous work9c were
replaced with CO, we would access exclusively bioactive
phenanthridinone derivatives (Scheme 1). Owing to the
synthetic values of the phenanthridinone structure and
our continuing interests in the Pd-catalyzed CꢀH activa-
tion reactions, herein we report the oxidative insertion of
carbon monoxide withN-sulfonyl-2-aminobiaryls through
CꢀH bond activation under trifluoroacetic acid (TFA)-
free and milder conditions (Scheme 1).
In this context, transition-metal-catalyzed carbonyla-
tion of organic compounds has turned into one of the
most important approaches in CꢀC, CꢀN bond-forming
processes.5 In this regard, Yu et al.6 have demonstrated
the ortho carbonylation of anilides and carboxylic acids
through Pd(II)-catalyzed CꢀH bond activation under a
CO atmosphere. A recent report by Chatani, Rovis, Booker-
Milburn and co-workers revealed the synthesis of phthal-
imides7 through oxidative carbonylation of benzamides via
Pd-, Ru-, and Rh-mediated CꢀH bond activation, re-
spectively. Similarly, Pd-catalyzed oxidative dual CꢀH
functionalization/carbonylation of diaryl ethers for the
synthesis of xanthones was achieved by Lei.8 We recently
reported the annulation of benzamides and N-sulfonyl-2-
(4) (a) Karthikeyan, J.; Cheng, C.-H. Angew. Chem., Int. Ed. 2011,
50, 98800–9883. (b) Karthikeyan, J.; Haridharan, R.; Cheng, C.-H.
Angew. Chem., Int. Ed. 2012, 51, 12343–12347. (c) Wang, G.-W.; Yuan,
T.-T.; Li, D.-D. Angew. Chem., Int. Ed. 2011, 50, 1380–1383.
(5) (a) Brennfuhrer, A.; Neumann, H.; Beller, M. Angew. Chem., Int. Ed.
2009, 48, 4114–4133. (b) Wu, X.-F.; Neumann, H.; Beller, M. Chem. Rev.
2013, 113, 1–35. (c) Hasegawa, N.; Charra, V.; Inoue, S.; Fukumoto, Y.;
Chatani, N. J. Am. Chem. Soc. 2011, 133, 8070–8073. (d) Xie, P.; Xie, Y.;
Qian, B.; Zhou, H.; Xia, C.; Huang, H. J. Am. Chem. Soc. 2012, 134, 9902–
9905. (e) Orito, K.; Horibata, A.; Nakamura, T.; Ushito, H.; Nagasaki, H.;
Yuguchi, M.; Yamashita, S.; Tokuda, M. J. Am. Chem. Soc. 2004, 126,
14342–14343. (f) Gagnier, S. V.; Larock, R. C. J. Am. Chem. Soc. 2003, 125,
4804–4807. (g) Campo, M. A.; Larock, R. C. Org. Lett. 2000, 2, 3675–3677.
(h) Cao, H.; Alper, H. Org. Lett. 2010, 12, 4126–4129.
(6) (a) Giri, R.; Yu, J.-Q. J. Am. Chem. Soc. 2008, 130, 14082–14083.
(b)Yoo, E. J.;Wasa, M.;Yu, J.-Q. J. Am. Chem. Soc. 2010, 132, 17378–17380.
(c) Giri, R.; Lam, J. K.; Yu, J.-Q. J. Am. Chem. Soc. 2010, 132, 686–693.
(7) (a) Inoue, S.; Shiota, H.; Fukumoto, Y.; Chatani, N. J. Am. Chem.
Soc. 2009, 131, 6898–6899. (b) Du, Y.; Hyster, T. K.; Rovis, T. Chem.
Commun. 2011, 47, 12074–12076. (c) Wrigglesworth, J. W.; Cox, B.; Lloyd-
Jones, G. C.; Booker-Milburn, K. I. Org. Lett. 2011, 13, 5326–5329.
(8) Zhang, H.; Shi, R.; Gan, P.; Liu, C.; Ding, A.; Wang, Q.; Lei, A.
Angew. Chem., Int. Ed. 2012, 51, 5204–5207.
(9) (a) Chuang, S.-C.; Rajeshkumar, V.; Cheng, C.-A.; Deng, J.-C.;
Wang, G.-W. J. Org. Chem. 2011, 76, 1599–1604. (b) Chen, C.-P.; Luo,
C.; Ting, C.; Chuang, S.-C. Chem. Commun. 2011, 47, 1845–1847.
(c) Rajeshkumar, V.; Chan, F.-W.; Chuang, S.-C. Adv. Synth. Catal.
2012, 354, 2473–2483.
(10) (a) Miura, M.; Tsuda, T.; Satoh, T.; Pivsa-Art, S.; Nomura, M.
J. Org. Chem. 1998, 63, 5211–5215. (b) Liang, Z.; Ju, L.; Xie, Y.; Huang,
L.; Zhang, Y. Chem.;Eur. J. 2012, 18, 15816–15821. (c) Liu, Y.-Y.;
Song, R.-J.; Wu, C.-Y.; Gong, L.-B.; Hu, M.; Wang, Z.-Q.; Xie, Y.-X.;
Lia, J.-H. Adv. Synth. Catal. 2012, 354, 347–353.
Table 1. Optimization of Reaction Conditionsa
oxidants
(equiv)
solvent
(mL)
temp (°C), yield of yield of
time (h) 2a (%)b 3 (%)b
entry
1
2
3
4
5
6
7
8
9
CH3COOAg (2) DMSO (4)
CH3COOAg (2) THF (4)
100, 4 h 36 (57)
70, 4 h 45 (85)
28
trace
ꢀ
CH3COOAg (2) CH3CN (4) 80, 24 h 40 (89)
CH3COOAg (3) CH3CN (4) 80, 24 h 79 (98)
CH3COOAg (4) CH3CN (4) 80, 24 h 90 (98)
CH3COOAg (5) CH3CN (4) 80, 24 h 94 (100)
ꢀ
ꢀ
ꢀ
Cu(OAc)2 (2)
Ag2O (2)
BQ (2)
CH3CN (4) 80, 20 h 44 (66)
CH3CN (4) 80, 20 h 46 (64)
ꢀ
ꢀ
CH3CN (4) 80, 20 h
0
ꢀ
10 KHSO5 (2)
11 K2S2O8 (2)
12 CH3COOAg (2) Bu-CN (4) 110, 24 h
13c CH3COOAg (5) CH3CN (4) 80, 24 h 81 (99)
14d CH3COOAg (2) CH3CN (4) 80, 24 h 18 (89)
CH3CN (4) 80, 20 h 35 (66)
25
17
49
ꢀ
CH3CN (4) 80, 20 h
0
0
ꢀ
(11) (a) Tsang, W. C. P.; Zheng, N.; Buchwald, S. L. J. Am. Chem.
Soc. 2005, 127, 14560–14561. (b) Li, B.-J.; Tian, S.-L.; Fang, Z.; Shi,
Z.-J. Angew. Chem., Int. Ed. 2008, 47, 1115–1118. (c) Jordan-Hore, J. A.;
Johansson, C. C. C.; Gulias, M.; Beck, E. M.; Gaunt, M. J. J. Am. Chem.
Soc. 2008, 130, 16184–16186. (d) Cho, S. H.; Yoon, J.; Chang, S. J. Am.
Chem. Soc. 2011, 133, 5996–6005. (e) Youn, S. W.; Bihn, J. H.; Kim, B. S.
Org. Lett. 2011, 13, 3738–3741.
a All the reactions were performed with 1a (50 mg, 0.154 mmol),
10 mol % of Pd(OAc)2 (3.47 mg, 0.015 mmol) under CO balloon. b Yields
were measured by 1H NMR spectroscopy, using mesitylene as an internal
standard. Values in parentheses are based on converted 1a. c 15 mol % of
Pd(OAc)2 was employed. d PdCl2(PPh3)2 was used as a catalyst.
B
Org. Lett., Vol. XX, No. XX, XXXX