Organic Letters
Letter
J.W. acknowledges financial support from the Chinese
Scholarship Council. We thank Dr. Charles W. Ross, III
(UPenn) for help in HRMS data acquisition.
Scheme 3. Putative Radical-Based Mechanism
REFERENCES
■
(1) (a) Biffis, A.; Centomo, P.; Del Zotto, A.; Zecca, M. Pd Metal
Catalysts for Cross-Couplings and Related Reactions in the 21st
Century: A Critical Review. Chem. Rev. 2018, 118, 2249−2295.
(b) Johansson Seechurn, C. C. C.; Kitching, M. O.; Colacot, T. J.;
Snieckus, V. Palladium-Catalyzed Cross-Coupling: A Historical
Contextual Perspective to the 2010 Nobel Prize. Angew. Chem., Int.
Ed. 2012, 51, 5062−5085.
(2) (a) Negishi, E.; Matsushita, H.; Chatterjee, S.; John, R. A.
Selective carbon-carbon bond formation via transition metal catalysis.
29. A highly regio- and stereospecific palladium-catalyzed allylation of
enolates derived from ketones. J. Org. Chem. 1982, 47, 3188−3190.
(b) Trost, B. M.; Self, C. R. On the palladium-catalyzed alkylation of
silyl-substituted allyl acetates with enolates. J. Org. Chem. 1984, 49,
468−473. (c) Trost, B. M.; Van Vranken, D. L. Asymmetric
Transition Metal-Catalyzed Allylic Alkylations. Chem. Rev. 1996, 96,
395−422. (d) Sha, S.-C.; Zhang, J.; Carroll, P. J.; Walsh, P. J. Raising
the pKa Limit of “Soft” Nucleophiles in Palladium-Catalyzed Allylic
Substitutions: Application of Diarylmethane Pronucleophiles. J. Am.
Chem. Soc. 2013, 135, 17602−17609.
(3) (a) Johannsen, M.; Jørgensen, K. A. Allylic Amination. Chem.
Rev. 1998, 98, 1689−1708. (b) Ghosh, R.; Sarkar, A. Palladium-
Catalyzed Amination of Allyl Alcohols. J. Org. Chem. 2011, 76, 8508−
8512. (c) Butt, N. A.; Zhang, W. Transition metal-catalyzed allylic
substitution reactions with unactivated allylic substrates. Chem. Soc.
Rev. 2015, 44, 7929−7967.
(4) (a) Keinan, E.; Roth, Z. Regioselectivity in organo-transition-
metal chemistry. A new indicator substrate for classification of
nucleophiles. J. Org. Chem. 1983, 48, 1769−1772. (b) Castanet, Y.;
Petit, F. Fonctionnalisation en position allylique d’olefine methyl-
enique par action d’un reactif nucleophile sur leur complexe palladie.
Tetrahedron Lett. 1979, 20, 3221−3222. (c) Shukla, K. H.; DeShong,
P. Studies on the Mechanism of Allylic Coupling Reactions: A
Hammett Analysis of the Coupling of Aryl Silicate Derivatives. J. Org.
Chem. 2008, 73, 6283−6291.
(5) (a) Lang, S. B.; O’Nele, K. M.; Tunge, J. A. Decarboxylative
Allylation of Amino Alkanoic Acids and Esters via Dual Catalysis. J.
Am. Chem. Soc. 2014, 136, 13606−13609. (b) Chen, H.; Jia, X.; Yu,
Y.; Qian, Q.; Gong, H. Nickel-Catalyzed Reductive Allylation of
Tertiary Alkyl Halides with Allylic Carbonates. Angew. Chem., Int. Ed.
2017, 56, 13103−13106. (c) Cui, X.; Wang, S.; Zhang, Y.; Deng, W.;
Qian, Q.; Gong, H. Nickel-catalyzed reductive allylation of aryl
bromides with allylic acetates. Org. Biomol. Chem. 2013, 11, 3094−
3097. (d) Tan, Z.; Wan, X.; Zang, Z.; Qian, Q.; Deng, W.; Gong, H.
Ni-catalyzed asymmetric reductive allylation of aldehydes with allylic
carbonates. Chem. Commun. 2014, 50, 3827−3830.
In conclusion, the in situ activation and radical-mediated
alkylation of cinnamyl alcohol scaffolds in a photoredox/
nickel-mediated transformation has been disclosed. During the
course of these studies, reaction conditions (e.g., ligand,
solvent) to favor the regioselective linear product and E-isomer
have been pinpointed. Furthermore, the range of “nucleo-
philic” partners has been expanded. By either prefunctionaliza-
tion or in situ activation with DMDC, radical precursors such
as alkyl DHPs and aryl sulfinates can be engaged in the
reaction, rendering alkylated or sulfonylated species in a highly
stereoselective and regioselective manner. Notably, mono-
saccharide-derived DHPs have been coupled in the reaction to
prepare nontraditional C-allylated glycosides. As a comple-
mentary approach for allyl-alkyl/sulfone coupling, the dis-
closed transformation extends the scope of allylic functional-
ization, while at the same time extending the range of Ni-
catalyzed photoredox transformations, providing a useful
synthetic tool for elaboration of readily available electrophilic
partners.
ASSOCIATED CONTENT
* Supporting Information
■
S
The Supporting Information is available free of charge on the
Detailed experimental procedures, mechanistic inves-
tigations, characterization data, and NMR spectra for
AUTHOR INFORMATION
■
Corresponding Author
ORCID
(6) (a) Rosen, B. M.; Quasdorf, K. W.; Wilson, D. A.; Zhang, N.;
Resmerita, A.-M.; Garg, N. K.; Percec, V. Nickel-Catalyzed Cross-
Couplings Involving Carbon−Oxygen Bonds. Chem. Rev. 2011, 111,
1346−1416. (b) Han, F.-S. Transition-metal-catalyzed Suzuki−
Miyaura cross-coupling reactions: a remarkable advance from
palladium to nickel catalysts. Chem. Soc. Rev. 2013, 42, 5270−5298.
(c) Tasker, S. Z.; Standley, E. A.; Jamison, T. F. Recent advances in
homogeneous nickel catalysis. Nature 2014, 509, 299.
Notes
(7) Son, S.; Fu, G. C. Nickel-Catalyzed Asymmetric Negishi Cross-
Couplings of Secondary Allylic Chlorides with Alkylzincs. J. Am.
Chem. Soc. 2008, 130, 2756−2757.
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
́
́
(8) Matsui, J. K.; Gutierrez-Bonet, A.; Rotella, M.; Alam, R.;
Gutierrez, O.; Molander, G. A. Photoredox/Nickel-Catalyzed Single-
Electron Tsuji−Trost Reaction: Development and Mechanistic
The authors are grateful for the financial support provided by
NIGMS (R35 GM 131680). We thank the NIH (S10
OD011980) for supporting the University of Pennsylvania
(UPenn) Merck Center for High Throughput Experimenta-
tion, which funded the equipment used in screening efforts. Z.-
Insights. Angew. Chem., Int. Ed. 2018, 57, 15847−15851.
́
́
(9) Gutierrez-Bonet, A.; Tellis, J. C.; Matsui, J. K.; Vara, B. A.;
Molander, G. A. 1,4-Dihydropyridines as Alkyl Radical Precursors:
D
Org. Lett. XXXX, XXX, XXX−XXX