The pharmacophore model for HDAC inhibition consists
of three elements: (1) a surface recognition unit which
interacts with the rim of the binding pocket, (2) a metal-
binding domain which coordinates to the active site zinc ion,
and (3) a linker that connects the surface recognition site to
the zinc-binding domain.1b Numerous HDAC inhibitors
(HDACi), both natural and synthetic, are known, and
variations in all three features have variably contributed to
potency and selectivity in new HDACi’s.4,5
amide isosteres with insight into the key contacts and
associated spatial determinants that provide this remarkable
level of activity.9 Herein we describe our continuing efforts
to modify the structural scaffold of largazole with the goal
of further defining and expanding structure-activity relation-
ships within the family of macrocyclic HDACi’s. Our over-
arching aim in this context is to perturb the class- and isoform-
selectivity as initially observed in robust biochemical assays
such that differences in specific enzymatic activity might later
be correlated with phenotypic responses in cell-based assays.
Our reported route to largazole proved highly reproducible,
and we were able to rapidly adapt it to simple variants of
the macrocyclic core.7 Thus we were able to easily access
milligram quantities of the C-2 epimer (3) and the enantiomer
(2) of largazole. Additionally, we sought to perturb the
conformation of the macrocycle by imparting greater rigidity;
our initial foray in this capacity replaced the valine residue
with proline (4). Compound 4 could be obtained in only
slightly diminished overall yield via the same synthetic route
we deployed in the total synthesis of largazole (see Sup-
porting Information).
Figure 1. Selected largazole analogs and azumamide E.
To date, the most potent and selective HDACi known is
largazole (1a, Figure 1), a densely functionalized macrocyclic
depsipeptide isolated from the cyanobacterium Symploca sp.
by Luesch and co-workers.6 We have recently disclosed a
concise, modular, and scalable total synthesis of largazole
and demonstrated its picomolar activity against HDACs 1,
2, and 3, as well as low nanomolar cytotoxicity against a
number of chemoresistant cancer cell lines.7,8 Additionally,
we have disclosed a detailed conformation-activity relation-
ship model for largazole, FK228, and their corresponding
Scheme 1. Synthesis of the Largazole-Azumamide Hybrid
(3) Karagiannis, T. C.; El-Osta, A. Leukemia 2007, 21, 61–5, and
references therein.
(4) (a) Richon, V. M.; Emiliani, S.; Verdin, E.; Webb, Y.; Breslow, R.;
Rifkind, R. A.; Marks, P. A. Proc. Natl. Acad. Sci. U.S.A. 1998, 95, 3003–
7. (b) Yoshida, M.; Kijima, M.; Akita, M.; Beppu, T. J. Biol. Chem. 1990,
265, 17174–9. (c) Darkin-Rattray, S. J.; Gurnett, A. M.; Myers, R. W.;
Dulski, P. M.; Crumley, T. M.; Allocco, J. J.; Cannova, C.; Meinke, P. T.;
Colletti, S. L.; Bednarek, M. A.; Singh, S. B.; Goetz, M. A.; Dombrowski,
A. W.; Polishook, J. D.; Schmatz, D. M. Proc. Natl. Acad. Sci. U.S.A. 1996,
93, 13143–7. (d) Kijima, M.; Yoshida, M.; Sugita, K.; Horinouchi, S.;
Beppu, T. J. Biol. Chem. 1993, 268, 22429–35. (e) Nakao, Y.; Yoshida,
S.; Matsunaga, S.; Shindoh, N.; Terada, Y.; Nagai, K.; Yamashita, J. K.;
Ganesan, A.; van Soest, R. W.; Fusetani, N. Angew. Chem., Int. Ed. Engl.
2006, 45, 7553–7. (f) Izzo, I.; Maulucci, N.; Bifulco, G.; De Riccardis, F.
Angew. Chem., Int. Ed. Engl. 2006, 45, 7557–60. (g) Wen, S.; Carey, K. L.;
Nakao, Y.; Fusetani, N.; Packham, G.; Ganesan, A. Org. Lett. 2007, 9,
1105–8. (h) Ueda, H.; Nakajima, H.; Hori, Y.; Fujita, T.; Nishimura, M.;
Goto, T.; Okuhara, M. J. Antibiot. (Tokyo) 1994, 47, 301–10. (i) Shigematsu,
N.; Ueda, H.; Takase, S.; Tanaka, H.; Yamamoto, K.; Tada, T. J. Antibiot.
(Tokyo) 1994, 47, 311–4. (j) Ueda, H.; Manda, T.; Matsumoto, S.;
Mukumoto, S.; Nishigaki, F.; Kawamura, I.; Shimomura, K. J. Antibiot.
(Tokyo) 1994, 47, 315–23. (k) Yurek-George, A.; Habens, F.; Brimmell,
Two methods were employed to alter side chain functionality
and access a series of largazole chimeras. For the largazole-
azumamide hybrid (9), the cis-geometry of the alkene residue
necessitated its early introduction. Thus, aldol condensation of
aldehyde 510 with thiazolidine-2-thione 6 provided the necessary
ꢀ-hydroxy acid building block (7, Scheme 1 and Supporting
Information). For other variants investigated, late-stage intro-
duction of the zinc-binding side arms via cross metathesis
proved expedient. Cross metathesis had previously been used
by Luesch, Phillips, and Cramer to attach the natural side chain
in their syntheses of largazole itself and was investigated
independently in our laboratories.8a-d
Cramer et al. have demonstrated that, at least where
largazole is concerned, the four-atom linker length relative
to the thiol is optimal for maximum HDAC inhibition.8d
However, literature precedent has shown that a four- to five-
atom chain is optimal in small molecules bearing alternative
zinc-binding functionality. Therefore, in the series of analogs
M.; Packham, G.; Ganesan, A. J. Am. Chem. Soc. 2004, 126, 1030–1
.
(5) For seminal work on HDACi hybrids:(a) Furumai, R.; Komatsu, Y.;
Nishino, N.; Khochbin, S.; Yoshida, M; Horinouchi, S. Proc. Natl. Acad.
Sci. U.S.A. 2000, 98, 87–92. (b) Nishino, N.; Jose, B.; Okamura, S.;
Ebisusaki, S.; Kato, T.; Sumida, Y.; Yoshida, M. Org. Lett. 2003, 5, 5079–
82.
(6) Taori, K.; Paul, V. J.; Luesch, H. J. Am. Chem. Soc. 2008, 130,
13506.
(7) Bowers, A. A.; West, N.; Taunton, J.; Schreiber, S. L.; Bradner,
J. E.; Williams, R. M. J. Am. Chem. Soc. 2008, 130, 11219–22
.
(8) For additional syntheses of largazole, see: (a) Nasveschuk, C. G.;
Ungermannova, D.; Liu, X.; Phillips, A. J. Org. Lett. 2008, 10, 3595–98.
(b) Ghosh, A. K.; Kulkarni, S. Org. Lett. 2008, 10, 3907–9. (c) Ying, Y.;
Taori, K.; Kim, H.; Hong, J.; Luesch, H. J. Am. Chem. Soc. 2008, 130,
8455–59. (d) Seiser, T.; Kamena, F.; Cramer, N. Angew. Chem., Int. Ed.
2008, 47, 6483–85. (e) Ren, Q.; Dai, L.; Zhang, H.; Tan, W.; Xu, Z.; Ye,
(9) Bowers, A. A.; Greshock, T. J.; West, N.; Estiu, G.; Schreiber, S. L.;
Wiest, O.; Williams, R. M.; Bradner, J. E. J. Am. Chem. Soc., DOI: 10.1021/
ja807772w.
(10) Wen, S.; Carey, K. L.; Nakao, Y.; Fusetani, N.; Packham, G.;
Ganesan, A. Org. Lett. 2007, 9, 1105–8.
T. Synlett 2008, 15, 2379
.
1302
Org. Lett., Vol. 11, No. 6, 2009