830
P. Wei et al. / Bioorg. Med. Chem. Lett. 19 (2009) 828–830
2. (a) Driscoll, J. S.; Hazard, G. F., Jr.; Wood, H. B., Jr.; Goldin, A. Cancer Chemother.
Rep. 2 1974, 4, 1–27; (b) Liu, K. K.-C.; Li, J.; Sakya, S. Mini-Rev. Med. Chem. 2004,
4, 1105.
heterocyclic aldehyde, thiophene-2-carbaldehyde (Table 2, entry
12), still showed high reactivity.
The detailed mechanism is still unclear, however a plausible
pathway to products 4 is illustrated in Scheme 2. In the initial step,
the condensation between aromatic aldehydes 1 and Meldrum’s
acid 2 gave intermediate 5. Michael addition between 5 and 3 then
furnished the intermediate 6, which isomerized to 7, subsequently
underwent intramolecular cyclization and then released acetone
and carbon dioxide to give compounds 4.
3. (a) Thomson, R. H. Naturally Occurring Quinones IV: Recent Advances; Blackie
Academic and Professional: London, 1997; (b) Thomson, R. H. Naturally
Occurring Quinones III: Recent Advances; Chapman and Hall: London, 1987.
4. (a) Hudson, A. T. Spec. Publ. R. Soc. Chem. 1988, 65, 266; (b) Elleff, S.; Kennaway, N.
G.; Buis, N. R. M.; Darley-Usmar, U. M.; Capaldi, R. A.; Bank, W. J.; Chance, B. Proc.
Natl. Acad. Sci. USA 1984, 81, 3529; (c) Powis, G. Pharmacol. Ther. 1987, 35, 57.
5. Ravelo, A.; Estévez-Braun, A.; Chávez-Orellana, H.; Pérez-Sacau, E.; Mesa-
Silverio, D. Curr. Top. Med. Chem 2004, 4, 241.
6. Guiraud, P.; Steiman, R.; Campos-Takaki, G. M.; Seigle-Murandi, F.; Simeon de
Buochberg, M. S. Planta Med. 1994, 60, 373.
7. (a) de Andrade-Neto, V. F.; Goulart, M. O. F.; da Silva Filho, J. F.; da Silva, M. J.;
Pinto, M. C. F. R.; Pinto, A. V.; Zalis, M. G.; Carvalho, L. H.; Krettli, A. U. Bioorg.
Med. Chem. Lett. 2004, 14, 1145; (b) Pérez-Sacau, E.; Estévez-Braun, A.; Ravelo,
A. G.; Gutiérrez, D.; Giménez, A. Chem. Biodiversity 2005, 2, 264.
8. (a) Goulart, M. O.; Zani, C. I.; Tonholo, J.; Freitas de Abreu, F. C.; Oliveira, A. B.;
Raaslan, D. S.; Starling, S.; Chiari, E. Bioorg. Med. Chem. Lett. 1997, 7, 2043; (b)
Ferreira, V.; Jorqueira, A.; Souza, A.; da Silva, M.; de Souza, M.; Gouvea, R.;
Rodrigues, C.; Pinto, A.; Castro, H.; Santos, D.; Araujo, H.; Bourguignon, S.
Bioorg. Med. Chem. 2006, 14, 5459.
9. (a) Fujiwara, A.; Mori, T.; Lida, A.; Ueda, S.; Nomura, T.; Tokuda, H.; Nishino, H. J.
Nat. Prod. 1998, 61, 629; (b) Krishnan, P.; Bastow, K. F. Biochem. Pharmacol. 2000,
60, 1367; (c) Pérez-Sacau, E.; Estévez-Braun, A.; Ravelo, A. G.; Ferro, E. A.; Tokuda,
H.; Mukainaka, T.; Nishino, H. Bioorg. Med. Chem. 2003, 11, 483; (d) Suzuki, M.;
Amano, M.; Choi, J.; Park, H. J.; Williams, B. W.; Ono, K.; Song, C. W. Radiat. Res.
2006, 165, 525; (e) Lee, J. I.; Choi, D. Y.; Chung, H. S.; Seo, H. G.; Woo, H. J.; Choi, B.
T.; Choi, Y. H. Exp. Oncol. 2006, 28, 30; (f) Woo, H. J.; Park, K.-Y.; Rhu, C.-H.; Lee, W.
H.; Choi, B. T.; Kim, G. Y.; Park, Y.-M.; Choi, Y. H. J. Med. Food 2006, 9, 161.
10. Sacau, E. P.; Esteveg-Braun, A.; Ravelo, A. G.; Ferro, E. A.; Tokuda, H.;
Mukainaka, T.; Nishino, H. Bioorg. Med. Chem. 2003, 11, 483.
11. (a) Evans, B. E.; Rittle, K. E.; Bock, M. G.; Di Pardo, R. M.; Freindinger, R. M.;
Whitter, W. L.; Lundell, G. F.; Veber, D. F.; Anderson, P. S.; Chang, R. S. L.; Lotte,
V. J.; Cerino, D. J.; Chen, T. B.; Kling, P. J.; Kimkel, K. A.; Springer, J. P.; Hirshfield,
J. J. Med. Chem. 1988, 31, 2235; (b) Mason, J. S.; Morize, I.; Menard, P. R.;
Cheney, D. L.; Hulme, C.; Labandiniere, R. F. J. Med. Chem. 1999, 42, 3251.
12. (a) Itoigawa, M.; Ito, C.; Tan, H. T.-W.; Okuda, M.; Tokuda, H.; Nishino, H.;
Furukawa, H. Cancer Lett. 2001, 174, 135; (b) Kapadia, G. J.; Balasubramanian,
V.; Tokuda, H.; Konoshima, T.; Takasaki, M.; Koyama, J.; Tagahaya, K.; Nishino,
H. Cancer Lett. 1997, 113, 47.
The observation of compound 4b in the reaction of 5b with 3 in
the same conditions (Scheme 3) provided the evidence supporting
this proposed mechanism.
Structures of all the products were characterized by IR, 1H NMR,
13C NMR and elemental analysis. All the data are conformity with
the structures.
In conclusion, an efficient MW-assisted multi-component
tandem reaction to constitute the
a-lapachone derivatives has
been developed. The reaction is easy to perform in high yields by
using inexpensive starting materials. The operational simplicity,
combined with environmental friendly aspect, make this new het-
erocycle synthetic strategy highly attractive and promising for the
development of compounds of potential synthetic interest. Addi-
tionally, the newly synthesized a-lapachone analogues may pres-
ent potential inhibitive ability of DNA topoisomerase II. Further
efforts are underway to explore their bioactivity and the results
will be reported in due course.
Acknowledgments
We are grateful for financial support from the National Science
Foundation of China (No. 20672090) and Natural Science Founda-
tion of the Jiangsu Province (No. BK2006033), Six Kinds of Profes-
sional Elite Foundatin of the Jiangsu Province (No. 06-A-039) and
Graduate Foundation of Xuzhou Normal University (No.
08YLB028).
13. (a) Krishnan, P.; Bastow, K. F. Cancer Chemother. Pharmacol. 2001, 47, 187; (b)
Krishnan, P.; Bastow, K. F. Biochem. Pharmacol. 2000, 60, 1367.
14. The general procedure for 4 was as follows: A mixture of aromatic aldehyde 1
(1.0 mmol), Meldrum’s acid 2 (1.0 mmol), 2-hydroxynaphthalene-1,4-dione 3
(1.0 mmol), and glacial acetic acid (2.0 mL) was added to the reaction vessel of
the monomodal EmrysTM Creator microwave synthesizer and allowed to react
under microwave irradiation at 200 W power (initial power 100 W) and 125 °C
for several minutes. The automatic mode stirred helps in mixing and the
uniform heating of the reactants. Upon completion, monitored by TLC, the
reaction vessel was cooled to room temperature. The solid compound was
Supplementary data
Supplementary data associated with this article can be found, in
collected by filtration, and recrystallized from EtOH (95%) to give pure
a-
lapachone derivatives 4. Compound 4c: mp: 242–244 °C; 1H NMR: d 8.12–8.10
(m, 1H, ArH), 8.01–7.99 (m, 1H, ArH), 7.93–7.87 (m, 2H, ArH), 7.52 (d, 2H,
J = 8.8 Hz, ArH), 7.31 (d, 2H, J = 8.4 Hz, ArH), 4.59 (dd, 1H, J1 = 1.2 Hz, J2 = 7.2 Hz,
CH), 3.41 (dd, 1H, J1 = 7.6 Hz, J2 = 16.0 Hz, CH2), 2.91 (dd, 1H, J1 = 1.2 Hz,
J2 = 16.0 Hz, CH2); 13C NMR (100 MHz) (d, ppm): 182.55, 176.95, 165.19,
152.15, 138.91, 134.49, 134.24, 131.78, 130.95, 130.89, 129.22, 126.05, 125.91,
References and notes
1. WHO
Cancer.
Available
from:
m
, cmÀ1): 1792, 1681, 1660. Anal. Calcd
124.27, 120.68, 35.47, 33.95. IR: (KBr,
for C19H11BrO4: C, 59.55; H, 2.89. Found: C, 59.74; H, 2.92.