914
A. E. Okoronkwo et al. / Tetrahedron Letters 50 (2009) 909–915
5. Conclusions
250
200
150
100
50
In summary, we showed by the procedure described herein that
organotellurium compounds having a carbon–tellurium single
bond are suitable substrates to copper cross-coupling reactions,
providing an interesting protocol for the synthesis of alkynyl tellu-
rides. The synthesized compounds have promising antidepressive-
like activity and should be pharmacologically interesting. We ex-
pect that these findings would be useful in choosing a method
for the synthesis of highly functionalized tellurium alkynes. This
reaction associated with electrophilic cyclizations of alkynes29 or
palladium cross-coupling of tellurides13 can contribute to an inter-
esting alternative route to the preparation of pharmacologically ac-
tive compounds. The moderate yields obtained for these
compounds were consequence of the remarkable instability of
these products in front of the purification methods. The application
of tellurides 4 in the synthesis of unsymmetrical 1,3-diyne systems
using copper and palladium catalysts is currently underway.
0
Control
3a
3b
3c
3m
3n
3o
250
200
150
100
50
Acknowledgments
We are grateful to FAPERGS, CAPES (SAUX / 2007) and CNPq for
the financial support. CNPq and CAPES are also acknowledged for
the fellowships.
References and notes
0
1. Paykel, E. S. Epidemiol. Psichiatr. Soc. 2006, 15, 4.
2. Sarko, J. Emerg. Med. Clin. North Am. 2000, 18, 637.
Control
Px
1
10
50
100
3. Sen, S.; Sanacora, G. Mt. Sinai J. Med. 2008, 75, 204.
Figure 1. Effect of oral administration of alkynyl vinyl tellurides 3a–c and 3m–o at
the dose of 1 mg/kg (a) and 3o at the range dose of 1–100 mg/kg (b) on the TST in
mice. Alkynyl vinyl tellurides 3a–c and 3m–o were administered orally 30 min
before the challenge test. Paroxetine (Px) at 16 mg/kg was used as a positive
control. Values are expressed as mean S.E.M. (n = 9–12 mice/group).
4. Kanski, J.; Drake, J.; Aksenova, M. Brain Res. 2001, 12, 21.
5. Ren, X.; Xue, Y.; Zhang, K.; Liu, J.; Luo, G.; Zheng, J.; Mu, Y.; Shen, J. FEBS Lett.
2001, 377, 380.
6. Avila, D. S.; Beque, M. C.; Folmer, V.; Braga, A. L.; Zeni, G.; Nogueira, C. W.;
Soares, F. A. A.; Rocha, J. B. T. Toxicology 2006, 100, 107.
7. Savegnago, L.; Borges, V. C.; Alves, D.; Jesse, C. R.; Rocha, J. B. T.; Nogueira, C. W.
Life Sci. 2006, 79, 1546.
8. Rao, A. S.; Freemerman, A. J.; Jarvis, W. D.; Chelliah, J.; Bear, H. D.; Mikkelsen, R.;
Grant, S. Leukemia 1996, 10, 1150.
9. Engman, L.; Kanda, T.; Gallegos, A.; Williams, R.; Powis, G. Anti-Cancer DrugI
2000, 15, 323.
3b did not present the effect at this dose (Fig. 1a). Alkynyl vinyl tel-
luride 3o demonstrated the best antidepressant-like action since at
1 mg/kg this compound attained 50% of effect. The effect of com-
pound 3o is comparable with the effect of paroxetine in the TST
(Fig. 1b). The TST is widely accepted animal model used to screen
new antidepressant drugs, as it is sensitive to all major classes of
antidepressant drugs including tricyclics, serotonin-specific reup-
take inhibitors, monoamine oxidase inhibitors, and atypicals.26,27
However, the TST has some drawbacks, including the possibility
of obtaining some false positive results. In order to rule out the
possibility that the reduction in the immobility time elicited by a
drug is due to an increase in the locomotor activity, the open-field
test19 was employed.28 In this study, alkynyl vinyl tellurides 3a–c
and 3m–o, at all doses tested, did not produce any change in num-
bers of crossings and rearing in the open-field test (data not
shown). Therefore, the antidepressant-like effect of alkynyl vinyl
tellurides 3a–c and 3m–o could not be attributed to an increase
in the locomotor activity of the animal.
10. Cunha, L. O. R.; Urano, M. E.; Chagas, J. R.; Almeida, P. C.; Bincoletto, C.;
Tersariol, I. L. S.; Comasseto, J. V. Bioorg. Med. Chem. Lett. 2005, 15, 755.
11. Avila, D. S.; Gubert, P.; Corte, C. L. D.; Alves, D.; Nogueira, C. W.; Rocha, J. B. T.;
Soares, F. A. A. Life Sci. 2007, 80, 1865.
12. (a) Klapars, A.; Huang, X.; Buchwald, S. L. J. Am. Chem. Soc. 2002, 124, 7421; (b)
Antilla, J. C.; Baskin, J. M.; Barder, T. E.; Buchwald, S. L. J. Org. Chem. 2004, 69,
5578; (c) Shafir, A.; Buchwald, S. L. J. Am. Chem. Soc. 2006, 128, 8742; (d) Shafir,
A.; Lichtor, P. A.; Buchwald, S. L. J. Am. Chem. Soc. 2007, 129, 3490; (e) Zhang, D.;
Liu, Z.; Yum, E. K.; Larock, R. C. J. Org. Chem. 2007, 72, 251.
13. (a) Zeni, G.; Ludtke, D. S.; Panatieri, R. B.; Braga, A. L. Chem. Rev. 2006, 106, 1032
(mesma da 3); (b) Zeni, G.; Braga, A. L.; Stefani, H. A. Acc. Chem. Res. 2003, 36,
731.
14. (a) Wirth, T.. In Topics in Current Chemistry; Springer: Heidelberg, 2000; Vol.
208, (b) Krief, A.. In Comprehensive Organometallic Chemistry II; Abel, E. V.,
Stone, F. G. A., Wilkinson, G., Eds.; Pergamon Press: New York, 1995; Vol. 11,.
Chapter 13 (c) Paulmier, C.. In Baldwin, J. E., Ed.; Organic Chemistry Series 4;
Pergamon Press: Oxford, 1986; (d) Petragnani, N. Tellurium in Organic Synthesis;
Academic Press: London, 1994.
15. Nogueira, C. W.; Zeni, G.; Rocha, J. B. T. Chem. Rev. 2004, 104, 6255.
16. Marino, J. P.; Nguyen, N. H. J. Org. Chem. 2002, 67, 6291.
17. Zeni, G.; Formiga, H. B.; Comasseto, J. V. Tetrahedron Lett. 2000, 41, 1311.
18. (a) Zeni, G.; Panatieri, R. B.; Lissner, E.; Menezes, P. H.; Braga, A. L.; Stefani, H. A.
Org. Lett. 2001, 3, 819; (b) Nogueira, C. W.; Alves, D.; Zeni, G. Tetrahedron Lett.
2005, 46, 8761.
R1
Bu
CuI
Te
R1 Te
R2
19. Dabdoub, M. J.; Baroni, A. C. M.; Lenardão, E. J.; Gianeti, T. R.; Hurtado, G. H.
Tetrahedron 2001, 57, 4271.
20. Cougnon, F.; Feray, L.; Bazin, S.; Bertrand, M. P. Tetrahedron 2007, 63, 11959.
21. Dabdoub, M. J.; Dabdoub, V. B.; Comasseto, J. V.; Petragnani, N. J. Organomet.
Chem. 1986, 308, 211.
R1
III
R1 Te Cu
R2
Te CuI
Bu
b
I
22. (a) Palomo, C.; Oiarbide, M.; Lopez, R.; Go´mez-Bengoa, E. Tetrahedron Lett.
2000, 41, 1283; (b) Yee Kwong, F.; Buchwald, S. L. Org. Lett. 2002, 4, 3517; (c)
Bates, C. G.; Gujadhur, R. K.; Venkataraman, D. Org. Lett. 2002, 4, 2803; (d)
Ranu, B. C.; Saha, A.; Jana, R. Adv. Synth. Catal. 2007, 349, 2690; (e) Carril, M.;
SanMartin, R.; Dominguez, E.; Tellitu, I. Chem. Eur. J. 2007, 13, 5100; (f) Verma,
A. K.; Singh, J.; Chaudhary, R. Tetrahedron Lett. 2007, 48, 7199.
23. General procedure for cross-coupling reaction: A 10 mL Schlenk tube, equipped
I
R2
BuI
I-
I-
III
R1
Bu
Te Cu
R2
a
I
Scheme 2.
with a magnetic stir bar, rubber septum, and argon, containing the CuI