1138
J. S. Yadav et al. / Tetrahedron Letters 50 (2009) 1136–1138
2. (a) Singh, R.; Shreeve, J. M. Acc. Chem. Res. 2004, 37, 31–44; (b) Nyffeler, P. T.;
NHCOCH3
R
R
Duran, S. G.; Burkart, M. D.; Vincent, S. P.; Wong, C.-H. Angew. Chem., Int. Ed.
2005, 44, 192–212.
3. (a) Stavber, S.; Kralj, P.; Zupan, M. Synlett 2002, 598–600; (b) Stavber, S.; Jereb,
M.; Zupan, M. Chem. Commun. 2002, 488–489; (c) Stavber, S.; Kralj, P.; Zupan,
M. Synthesis 2002, 1513; (d) Zupan, M.; Iskra, J.; Stavber, S. Tetrahedron Lett.
1997, 38, 6305–6306.
10 mol% InBr3
CH3CN, R.T.
NBS
+
Br
3m
4. Syvret, R. G.; Butt, K. M.; Nguyen, T. P.; Bulleck, V. L.; Rieth, R. D. J. Org. Chem.
2002, 67, 4487–4493.
Scheme 2.
5. Ye, C. F.; Shreeve, J. M. J. Org. Chem. 2004, 69, 8561–8563.
6. Qi, X.; Lee, S. H.; Kwon, J. Y.; Kim, Y.; Kim, S. J.; Lee, Y. S.; Yoon, J. J. Org. Chem.
2003, 68, 9140–9143.
7. (a) Stavber, S.; Pecan, T. S.; Papez, M.; Zupan, M. Chem Commun. 1996, 2247–
2248; (b) Stavber, S.; Pecan, T. S.; Zupan, M. J. Chem. Soc., Perkin Trans. 2 2000,
1141–1145.
8. (a) Hassner, A.; Levy, L. A.; Gault, R. Tetrahedron Lett. 1966, 3119–3123; (b)
Belluci, G.; Bianchini, R.; Chiappe, C. J. Org. Chem. 1991, 56, 3067–3073.
9. (a) Li, C. J.; Chan, T. H. Tetrahedron 1999, 55, 11149–11176; (b) Babu, G.;
Perumal, P. T. Aldrichim. Acta 2000, 33, 16; (c) Ghosh, R. Indian J. Chem., Sect. B
2001, 40, 550–557.
NHCOR
F
10 mol% InF3
R-CN, R.T.
SelectfluorTM
+
4e
Scheme 3.
10. Yadav, J. S.; Reddy, B. V. S.; Rao, K. V.; Saritha Raj, K.; Prasad, A. R.; Kiran Kumar,
S.; Kunwar, A. C.; Jayaprakash, P.; Jagannadh, B. Angew. Chem., Int. Ed. 2003, 42,
5198–5201.
11. (a) Yadav, J. S.; Sunny, A.; Reddy, B. V. S.; Sabitha, G. Tetrahedron Lett. 2001, 42,
8063–8065; (b) Yadav, J. S.; Reddy, B. V. S.; Kumar, G. M. Synlett 2001, 1781–
1783; (c) Yadav, J. S.; Reddy, B. V. S.; Sabitha, G.; Prabhakar, A.; Kunwar, A. C.
Tetrahedron Lett. 2003, 44, 2221–2224; (d) Yadav, J. S.; Reddy, B. V. S.; Reddy,
Ch. S. Tetrahedron Lett. 2004, 45, 4583–4585.
12. Typical procedure: To a stirred solution of b-methyl styrene (118 mg, 1.0 mmol)
and Selectfluor or NBS (1.2 mmol) in acetonitrile (4.0 mL) was added InX3
(0.1 mmol) at room temperature. The resulting solution was stirred for the
appropriate time, until the complete consumption of b-methyl styrene as
indicated by TLC. Then, reaction mixture was quenched with water (5 mL) and
was extracted with ethyl acetate (2 ꢀ 15 mL). The organic layer was separated,
dried over anhydrous Na2SO4, and concentrated in vacuo. The crude product
was purified by column chromatography on silica gel using hexane/EtOAc (3:1)
83% yield (entry e, Table 1). In the case of b-substituted styrenes such
as b-methyl styrene and stilbene, the desired bromoamides were
obtained with trans-stereoselectivity (Scheme 2).
The stereochemistry of products 3m and 4e was assigned as
trans by coupling constants of protons and also by comparison of
their spectral data with authentic samples.1b Next, we studied
a-
fluoroamidation of alkenes with Selectfluor using InF3 as an acti-
vating Lewis acid. Interestingly, various alkenes underwent
smooth
a-fluoroamidation to give N-(2-fluoro-1-alkyl)acetamides
in high yields (Scheme 3).
Similarly, b-methyl styrene and stilbene also gave the corre-
sponding trans-fluoroamides. The formation of vic-fluoroamides
to afford pure a-haloamide. Spectral data for selected compounds: N-1-(2-fluoro-
1-phenylpropyl)acetamide: 4b: IR (KBr): m(max) 3783, 3697, 3321, 3060, 2989,
2935, 2359, 1883, 1813, 1651, 1543, 1443, 1375, 1302, 1070, 1029, 742,
can be rationalized by assuming the formation of
p-fluoro carbo-
700 cmꢁ1 1H NMR (200 MHz, CDCl3): d 7.20–7.44 (m, 5H), 6.3 (d, J = 8.8 Hz,
.
cationic intermediate, which is attacked by the nucleophilic nitro-
gen of the nitrile like the Ritter-type reaction. Of various
indium(III) reagents such as In(OTf)3, In(ClO4)3, and In(NO3)3
tested, InX3 was shown to be effective for this conversion. In the
absence of catalyst, low conversions (20–35%) were achieved even
at 80 °C over 24 h. The use of 10 mol % of InX3 is essential for the
success of the reaction. The scope and generality of this process
are illustrated with respect to various vinyl arenes, and the results
are presented in Table 1.12
In summary, this Letter describes a rapid and an efficient cata-
lytic method for the haloamidation of vinyl arenes using a catalytic
amount of indium(III) halides. The use of water-tolerant InX3
makes this procedure quite simple and convenient. This method
offers significant advantages such as low catalyst loading, high
conversions, water-tolerant catalyst, and operational simplicity.
1H), 4.97–5.16 (m, 1H), 4.78–4.91 (m, 1H), 2.02 (d, J = 10.0 Hz, 3H), 1.09–1.47
(m, 3H). 13C NMR (75 MHz, CDCl3): d 170.1, 169.8, 138.3, 137.2, 128.6, 128.4,
127.6 127.0, 93.8, 93.6, 91.4, 91.2, 64.0, 63.8, 63.7, 63.7, 23.4, 18.2, 18.1. LC–
MS: m/z: 218 (M+Na). HRMS calcd for C11H14FNONa: 218.0951; Found,
218.0961. N-1-(2-bromo-1-phenylpropyl)acetamide: 3b: IR (KBr) m(max) 3308,
3062, 3031, 2965, 2873, 1736, 1651, 1538, 1454, 1375, 1261, 1184, 1089, 753,
700 cmꢁ1 1H NMR (200 MHz, CDCl3): d 7.15–7.35 (m, 5H), 4.57 (d, J = 7.5 Hz,
.
1H), 4.29–4.38 (m, 1H), 2.07 (d, J = 1.5 Hz, 3H), 1.46 (d, J = 16.0 Hz, 3H). LC–MS:
m/z: 176 (M+Na) (–HBr). HRMS calcd for C11H14NONa: 176.1075; Found:
176.1073. N-1-(2-fluoro-1,2,3,4-tetrahydro-1-naphthalenyl)acetamide: 4e: IR
(KBr): m(max) 3286, 3063, 2921, 2852, 1638, 1544, 1437, 1370, 1057, 744,
701 cmꢁ1 1H NMR (200 MHz, CDCl3): d 7.03–7.30 (m, 4H), 6.0 (d, J = 8.3 Hz,
.
1H), 4.85–5.41 (m, 2H), 2.96–3.16 (m, 1H), 2.65–2.79 (m, 1H), 2.24–2.41 (m,
1H), 2.12 (s, 3H), 1.79–2.07 (m, 1H). 13C NMR (75 MHz, CDCl3): d 170.0, 169.8,
139.2, 137.0, 128.6, 128.6, 128.5, 128.0, 127.0, 93.4, 93.2, 91.0, 90.8, 57.4, 57.2,
56.6, 56.2, 23.0, 19.6, 19.4, 18.6, 18.4. LC–MS: m/z: 208 (M+1). HRMS calcd for
C12H14FNONa:
phenylethyl)propanamide: 4h: IR (KBr): m(max) 3288, 3068, 2928, 2853, 1654,
1550, 1496, 1456, 1371, 1264, 1015, 697 cmꢁ1 1H NMR (300 MHz, CDCl3): d
230.0957;
Found,
230.0953.N-1-(2-fluoro-1-methyl-1-
.
7.22–7.34 (m, 5H), 5.73 (s, 1H), 4.67–4.76 (m, 1H), 4.56 (dd, J = 9.2, 18.8 Hz,
1H), 2.23 (dd, J = 8.3, 15.8 Hz, 2H), 1.75 (d, J = 2.2 Hz, 3H), 1.16 (t, J = 7.5 Hz,
3H). LC–MS: m/z: 232 (M+Na). HRMS calcd for C12H16FNONa: 232.1113; Found,
References and notes
232.1122.N-1-(2-bromo-1,2-diphenylethyl)acetamide: 3m: IR (KBr):
m(max) 3384,
2922, 1643, 1537, 1451, 1377, 1216, 1056, 761, 700 cmꢁ1 1H NMR (200 MHz,
.
1. (a) Kurti, L.; Czako, B. Strategic Applications of Named Reactions in Organic
Synthesis; Elsevier: Amsterdam, 2005. pp 382–383; (b) Yeung, Y. Y.; Gao, X.;
Corey, E. J. J. Am. Chem. Soc. 2006, 128, 9644–9645; (c) Yeung, Y.-Y.; Hong, S.;
Corey, E. J. J. Am. Chem. Soc. 2006, 128, 6310–6311.
CDCl3): d 7.15–7.44 (m, 10H), 5.15 (d, J = 7.3 Hz, 1H 1H), 4.93–5.01 (m, 1H),
2.21 (d, J = 1.4 Hz, 3H). LC–MS: m/z: 238 (M+Na) (–HBr). HRMS calcd for
C16H16NONa: 238.1231; Found, 238.1243.