Page 5 of 6
Journal of the American Chemical Society
126, 12718. (f) Markle, T. F.; Rhile, I. J.; DiPasquale, A. G.; Mayer, J.
M. Probing concerted proton–electron transfer in phenol–imidazoles.
Proc. Natl. Acad. Sci. U.S.A. 2008, 105, 8185. (g) Markle, T. F.; Tronic,
T. A.; DiPasquale, A. G.; Kaminsky, W.; Mayer, J. M. Effect of Basic
Site Substituents on Concerted Proton–Electron Transfer in Hydrogen-
Bonded Pyridyl–Phenols. J. Phys. Chem. A. 2012, 116, 12249.
(3) (a) Miller, D. C.; Choi, G. J.; Orbe, H. S.; Knowles, R. R. Cata-
lytic Olefin Hydroamidation Enabled by Proton-Coupled Electron Trans-
fer. J. Am. Chem. Soc. 2015, 137, 13492. (b) Nguyen, S.T; Zhu, Q;
Knowles, R.R. PCET-Enabled Olefin Hydroamidation Reactions with N-
Alkyl Amides. ACS Catal. 2019, 9, 4502. (c) Ruccolo, S.; Qin, Y.;
Schnedermann, C.; Nocera, D. G. General Strategy for Improving the
Quantum Efficiency of Photoredox Hydroamidation Catalysis. J. Am.
Chem. Soc. 2018, 140, 14926
(4) (a) Kuss-Petermann, M.; Wenger, O. S. Mechanistic Diversity in
Proton-Coupled Electron Transfer between Thiophenols and Photoex-
cited [Ru (2, 2′-Bipyrazine) 3] 2+. J. Phys. Chem. Lett. 2013, 4, 2535. (b)
Medina-Ramos, J.; Oyesanya, O.; Alvarez, J. C. Buffer Effects in the Ki-
netics of Concerted Proton-Coupled Electron Transfer: The Electrochem-
ical Oxidation of Glutathione Mediated by [IrCl6] 2–at Variable Buffer p
K a and Concentration. J. Phys. Chem. C. 2013, 117, 902. (c) Gagliardi,
C. J.; Murphy, C. F.; Binstead, R. A.; Thorp, H. H.; Meyer, T. J. Con-
certed Electron–Proton Transfer (EPT) in the Oxidation of Cysteine. J.
Phys. Chem. C. 2015, 119, 7028.
(5) Bordwell, F. G.; Cheng, J.-P.; Ji, G.-Z.; Satish, A. V.; Zhang, X.
Bond dissociation energies in DMSO related to the gas phase values. J.
Am. Chem. Soc. 1991, 113, 9790.
(6) Cheng, J. P.; Zhao, Y. Y. Homolytic bond cleavage energies of the
acidic N–H bonds in dimethyl sulfoxide solution and properties of the
corresponding radicals and radical cations. Tetrahedron. 1993, 49, 5267.
(7) Mader, E. A.; Mayer, J. M. The Importance of Precursor and Suc-
cessor Complex Formation in a Bimolecular Proton− Electron Transfer
Reaction. Inorg. Chem. 2010, 49, 3685.
(8) (a) Bordwell, F. G.; Zhang, X. M.; Satish, A. V.; Cheng, J. P. As-
sessment of the importance of changes in ground-state energies on the
bond dissociation enthalpies of the OH bonds in phenols and the SH
bonds in thiophenols. J. Am. Chem. Soc. 1994, 116, 6605. (b) Dené s, F.;
Pichowicz, M.; Povie, G.; Renaud, P. Thiyl Radicals in Organic Synthe-
sis. Chem. Rev. 2014, 114, 2587. (c) dos Santos, J.V.A.; Newton, A. S.;
Bernardino, R.; Guedes, R.C. Substituent effects on O–H and S–H bond
dissociation enthalpies of disubstituted phenols and thiophenols. Interna-
tional Journal of Quantum Chemistry. 2008, 108, 754. See SI for calibra-
tion of S–H bond energies among different studies.
(9) As in previous studies, we are unable to quantify the favorability
of any potential post-PCET H-bonding. Thus, the reported driving force,
ΔG°’PCET, is taken to be the free energy change from the H-bonded reac-
tant state to the unbound product state, which is expected to be more en-
dergonic than the actual MS-PCET driving force.
(10) Romero, N.; Nicewicz, D. A. Mechanistic Insight into the Photo-
redox Catalysis of Anti-Markovnikov Alkene Hydrofunctionalization Re-
actions. J. Am. Chem. Soc. 2014, 136, 17024
(11) (a) Dempsey, J. L.; Winkler, J. R.; Gray, H. B. Proton-coupled
electron flow in protein redox machines. Chem. Rev. 2010, 110, 7024. (b)
Huynh, M. H. V.; Meyer, T. J. "Proton-coupled electron transfer." Chem.
Rev. 2007, 107, 5004
(12) Mayr, H.; Breugst, M.; Ofial, A. R. Farewell to the HSAB Treat-
ment of Ambident Reactivity. Angew. Chem., Int. Ed. 2011, 50, 6470.
(13) The correlation in the thiol series also suggests that any impact
of varying the position of the substituents on aryl ring is accurately cap-
tured by the variance in the BDFEs of the thiol S-H bonds and in their
ability to serve as H-bond donors as reflected in the measured KA values.
(14) (a) Bernasconi, C.F. The principle of imperfect synchronization:
I. Ionization of carbon acids. Tetrahedron. 1985, 41, 3219. (b)
Bernasconi, C.F. Intrinsic barriers of reactions and the principle of non-
perfect synchronization. Acc. Chem. Res. 1987, 20, 301. (c) Bernasconi,
C.F. The principle of nonperfect synchronization: More than a qualitative
concept? Acc. Chem. Res. 1992, 25, 9. (d) Bernasconi, C.F. The principle
of non-perfect synchronization. Adv. Phys. Org. Chem. 1992, 27, 119. (e)
Bernasconi, C.F. The principle of nonperfect synchronization: recent de-
velopments. Adv. Phys. Org. Chem. 2010, 44, 223.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
(15) Darcy, J. W.; Kolmar, S. S.; Mayer, J. M. Transition State Asym-
metry in C–H Bond Cleavage by Proton-Coupled Electron Transfer. J.
Am. Chem. Soc. 2019, 141, 10777.
5
ACS Paragon Plus Environment