1192
L. Li et al. / Tetrahedron Letters 50 (2009) 1188–1192
RO2S
RO2S
H
O
O
Me
O
O
O
O
S
Me
O
R
O
Me
Me
O
Me
Me
O
R
O
Me
O
O
O
MsO
15a-u
O
O
O
O
A
C
Me
Me
O
Me
Me
O
O
O
O
O
M
e
O
Me
R
O
Me
Me
O
R
O
O
O
O
O
R
O
Me
MsO
Me
O
RO 2S
RO2S
B
15a-l
Me
D
Scheme 5.
of irradiation, or some combination of these factors. In contrast to
10d, 14a tolerated the conditions that had been used for ketals 4a–
c, and irradiation in aq MeOH furnished 15a in 73% and only 1.4:1
dr, indicating the importance of low temperature and aprotic sol-
vent. To further clarify this issue, we also prepared 4f (analogous
to 4a, but with mesylate in place of triflate). Unfortunately, this
substrate was unreactive to extended irradiation in toluene at
ꢁ78 °C, or even at rt. Reaction in aq MeOH furnished a nearly equal
ratio of endo and exo cycloadducts 6f and 7f, each formed in only
moderate diastereoselectivity (1.9–2.4:1 dr). From these results,
we conclude that all of the factors mentioned above affect the
selectivity of the cycloaddition process.
It was not possible to obtain the major diastereomers of 6, 7, or
15 in homogeneous crystalline form, precluding the rigorous
assignment of relative configuration. A working model for the most
selective case (14a) is shown above (Scheme 5). Of the four possi-
ble exo transition states in which the tether adopts a chair-like con-
formation (A–D), A and B are considered less favorable due to
steric interaction between the ketal methyl group adjacent to the
pseudoaxial oxygen and the rest of the tether. Likewise C is ex-
pected to experience unfavorable nonbonded interactions between
the sulfonate group and the pseudoaxial hydrogen, while D seems
to be largely devoid of such issues. This model predicts isomer
15a–l, in which the bridgehead stereocenter adjacent to the ketal
has the same relative configuration as the ketal stereocenters, to
be the major product. However, pending access to a sample suit-
able for single crystal X-ray diffraction analysis, this stereochemi-
cal assignment must remain tentative.
Pyran-2-ones linked to furans and possessing a keto group in
the three-carbon tether are easily prepared. Chiral ketals can be in-
stalled adjacent to either heterocycle, and impose poor to moder-
ate levels of diastereoselectivity in the photochemical [4+4]-
cycloaddition reactions of these substrates. Notably, derivatization
of the 4-hydroxyl on the pyrone ring with a methanesulfonyl group
leads to high or complete selectivity for the exo cycloadduct in
most cases. Improved selectivity and a more detailed understand-
ing of the mechanism of asymmetric induction may be possible
through further optimization of the ketal moiety and the photocy-
cloaddition conditions, and the results of these continuing studies
will be described in due course.
References and notes
1. (a) Evans, P. A.; Baum, E. W.; Fazal, A. N.; Pink, M. Chem. Commun. 2005, 63;
(b) Murakami, M.; Ashida, S.; Matsuda, T. J. Am. Chem. Soc. 2006, 128, 2166;
(c) Clark, J. S.; Walls, S. B.; Wilson, C.; East, S. P.; Drysdale, M. J. Eur. J. Org.
Chem. 2006, 323; (d) Murphy, G. K.; Marmsäter, F. P.; West, F. G. Can. J.
Chem. 2006, 84, 1470; (e) Krishnan, K. S.; Smitha, M.; Suresh, E.;
Radhakrishnan, K. V. Tetrahedron 2006, 62, 12345; (f) DeBoef, B.; Counts,
W. R.; Gilbertson, S. R. J. Org. Chem. 2007, 72, 799; (g) Zhang, Y.-D.; Ren, W.-
W.; Lan, Y.; Xiao, Q.; Wang, K.; Xu, J.; Chen, J.-H.; Yang, Z. Org. Lett. 2008, 10,
665; (h) Jiao, L.; Yuan, C.; Yu, Z.-X. J. Am. Chem. Soc. 2008, 130, 4421;
Reviews: (i) Mehta, G.; Singh, V. Chem. Rev. 1999, 99, 881; (j) Michaut, A.;
Rodriguez, J. Angew. Chem., Int. Ed. 2006, 45, 5740; (k) López, F.; Mazcareñas,
J. L. Chem. Eur. J. 2007, 13, 2172.
2. (a) Zhu, M.; Qiu, Z. L.; Hiel, G. P.; Sieburth, S. McN. J. Org. Chem. 2002, 67, 3487;
(b) Wang, Y.; Schill, B. D.; Arif, A. M.; West, F. G. Org. Lett. 2003, 5, 2747; (c)
Wender, P. A.; Croatt, M. P.; Witulski, B. Tetrahedron 2006, 62, 7505; (d)
Harmata, M.; Rashatasakhon, P.; Barnes, C. L. Can. J. Chem. 2006, 84, 1456.
3. (a) de Mayo, P.; Yip, R. W. Proc. Chem. Soc. London 1964, 84; (b) de Mayo, P.;
McIntosh, C. L.; Yip, R. W.. In Organic Photochemical Synthesis; Srinivasan, R.,
Roberts, T. D., Eds.; Wiley-Interscience: New York, 1971; Vol. 1, pp 99–100.
4. (a) West, F. G.; Chase, C. E.; Arif, A. M. J. Org. Chem. 1993, 58, 3794; (b) Chase, C.
E.; Bender, J. A.; West, F. G. Synlett 1996, 1173; (c) Li, L.; Chase, C. E.; West, F. G.
Chem. Commun. 2008, 4025.
5. Li, L.; McDonald, R.; West, F. G. Org. Lett. 2008, 10, 3733.
6. Song, D.; McDonald, R.; West, F. G. Org. Lett. 2006, 8, 4075.
7. For examples of diastereoselectivity in related metal-catalyzed or
photochemical [4+4]-cycloadditions using tether-based control elements, see:
(a) Wender, P. A.; Nuss, J. M.; Smith, D. B.; Suárez-Sobrino, A.; Vågberg, J.;
Decosta, D.; Bordner, J. J. Org. Chem. 1997, 62, 4908; (b) Sieburth, S. McN.;
McGee, K. F., Jr.; Al-Tel, T. H. J. Am. Chem. Soc. 1998, 120, 587; (c) McGee, K. F.,
Jr.; Al-Tel, T. H.; Sieburth, S. McN. Synthesis 2001, 1185.
8. (a) Mash, E. A.; Hemperly, S. B.; Nelson, K. A.; Heidt, P. C.; Van Deusen, S. J. Org.
Chem. 1990, 55, 2045; Review: (b) Alexakis, A.; Mangeney, P. Tetrahedron:
Asymmetry 1990, 1, 477.
9. Boehler, M. A.; Konopelski, J. P. Tetrahedron 1991, 47, 4519.
10. (a) Sammakia, T.; Berliner, M. A. J. Org. Chem. 1994, 59, 6890; (b) Anderson, J. C.;
Blake, A. J.; Graham, J. P.; Wilson, C. Org. Biomol. Chem. 2003, 1, 2877.
11. Nemoto, H.; Nagai, M.; Kohzuki, K.; Fukumoto, K.; Kametani, T. J. Chem. Soc.,
Perkin Trans. 1 1988, 2835.
12. Bravo, P.; Resnati, G.; Viani, F.; Cavicchio, G. J. Chem. Res. (S) 1986, 374.
13. Joshi, M. V.; Hemler, C.; Cava, M. P.; Cain, J. L.; Bakker, M. G.; McKinley, A. J.;
Metzger, R. M. J. Chem. Soc., Perkin Trans. 2 1993, 1081.
14. For an early report on the scope of this unexpected process, see: Bender, J. A.;
Daves, S.; West, F. G. Tetrahedron Lett. 1998, 39, 2051.
15. (a) Corey, E. J.; Streith, J. J. Am. Chem. Soc. 1964, 86, 950; (b) Chapman, O. L.;
McIntosh, C. L.; Pacanshy, J. J. Am. Chem. Soc. 1973, 95, 244; (c) Huang, B.-S.;
Pong, R. G. S.; Laureni, J.; Krantz, A. J. Am. Chem. Soc. 1977, 99, 4154; (d)
Arnold, B. R.; Brown, C. E.; Lusztyk, J. J. Am. Chem. Soc. 1993, 115, 1576; (e)
Chase, C. E.; Jarstfer, M. B.; Arif, A. M.; West, F. G. Tetrahedron Lett. 1995, 36,
8531.
16. Wiley, R. H.; Jarboe, C. H.; Ellert, H. G. J. Am. Chem. Soc. 1955, 77, 5102.
17. Tsunoda, T.; Suzuki, M.; Noyori, R. Tetrahedron Lett. 1980, 21, 1357.
18. Although ethanesulfonate 10e also demonstrated complete exo selectivity, its
precursor 9e was not used in subsequent studies due to extremely slow rates of
ketalization.
Acknowledgements
19. Diastereomer ratios for 15a and 15b were measured by integration of the enol
mesylate alkene protons, which were well resolved in both cases.
The authors wish to thank NIGMS, NSF, and NSERC (Canada) for
generous support of this work.