S. Krompiec et al. / Tetrahedron Letters 50 (2009) 1193–1195
1195
obtained solution of 2,6-dichlorobenzohydroximoyl chloride in CH2Cl2 was
added to the isomerization product, at 0–5 °C, followed by dropwise addition of
a solution of triethylamine (3.9 mmol) in CH2Cl2 (at 0–5 °C). The mixture was
stirred for 24 h at room temperature. The reaction mixture was washed with
water (3 Â 10 ml), dried over Na2SO4, and dissolved in hexane or in benzene–
hexane mixture. The resulting solution was passed through a short column
filled with amino functionalized mesoporous silica-foam (1 g MCF per 20 mg of
Ru-complex), and the ruthenium complexes were quantitatively adsorbed.
Isoxazolines–orthoesters were eluted with hexane or benzene-hexane
mixtures. The volatile fractions were evaporated on a rotary evaporator, and
pure products were obtained.Addition of ROH to O-allyl acetals: 2-Vinyl-1,3-
dioxane, 2-vinyl-1,3-dioxolane or acrolein diethyl acetal, ROH (1-butanol,
m-cresol), catalyst (1 mol %), and Na2CO3 (5 mol %) in a glass screw-capped
ampoule, purged with argon, then tightly capped, were heated in an oil bath for
the given period of time. Molar ratios of the reaction mixture components and
the temperatures are shown in Figure ure1 and Schemes 1–3. The orthoester
products were separated by distillation. When ROH was m-cresol, the excess
was removed, before distillation, by extraction with 1 M NaOH.
References and notes
1. Greene, T. W.; Wuts, P. G. M. Protective Groups in Organic Synthesis, 2nd ed.;
Wiley: New York, 1991. pp 267–269.
2. Houben-Weyl. Methoden der organischen Chemie, IV Auflage, Georg Thieme:
Stuttgart, Bd. E5/1, S, 1995; pp 1–192.
3. Kocienski, P. J. Protecting Groups; Georg Thieme: Stuttgart, 1994.
4. Chen, H.; Zhang, H.; McCallum, C. M.; Szoka, F. C.; Guo, X. J. Med. Chem. 2007,
50, 4269–4278.
5. By, K.; Nantz, M. H. Angew. Chem., Int. Ed. 2004, 43, 1117–1120.
6. Mohlin, K.; Holmberg, K. J. Colloid Interface Sci. 2006, 299, 435–442.
7. Hellberg, P.-E. J. Surfact. Deterg. 2002, 5, 217–227.
8. Koppes, M. J.; van der Arend, J.; 1993, U.S. 5,194,535; Chem. Abstr. 1993, 119,
9343x.
9. Krompiec, S.; Penczek, R.; Penkala, M.; Krompiec, M.; Rzepa, J.; Matlengiewicz,
M.; Jaworska, J.; Baj, S. J. Mol. Catal. A: Chem. 2008, 290, 15–22.
10. Mzengeza, S.; Whitney, R. A. J. Org. Chem. 1988, 53, 4074–4081.
11. Weidner-Wells, M. A.; Fruga-Spano, S. A.; Turchi, I. J. J. Org. Chem. 1998, 63,
6319–6328.
21. Selected spectral data: 3-(2,6-Dichlorophenyl)-4-methyl-1,6,10-trioxa-2-
azaspiro[4.5]dec-2-ene: IR (film) 3061, 2979, 2933, 2862, 1734, 1560, 1432,
1148, 788, 741. HRMS (FAB): calcd for C13H14NO3Cl2 (M+H)+ 302.035074;
found, 302.03508. 1H NMR (400 MHz, CDCl3) d = 1.05 ppm (d, J = 7.1 Hz, 3H,
CH3CH); 1.79 (t, J = 5.9 Hz, 2H, CH2CH2CH2); 3.61 (t, J = 5.9 Hz, 2H, CH2CH2CH2);
4.15 (t, J = 6.0 Hz, 2H, CH2CH2CH2); 4.37 (q, J = 7.1 Hz, 1H, CH3CH); 7.26–7.32
12. Batt, D. G.; Hughton, G. C.; Daneker, W. F.; Jadhav, P. K. J. Org. Chem. 2000, 65,
8100–8104.
13. Pinto, A.; Conti, P.; Amici, M.; Tamborini, L.; Madsen, U.; Christesen, T.;
Bräuner-Osborne, H.; Micheli, T. J. Med. Chem. 2008, 51, 2311–2315.
14. Laufer, S. A.; Margutti, S. J. Med. Chem. 2008, 51, 2580–2584.
15. Tønder, J. E.; Hansen, J. B.; Begtrup, M.; Pettersson, I.; Rimvall, K.; Christensen,
B.; Ehrbar, U.; Olesen, P. H. J. Med. Chem. 1999, 42, 4970–4980.
16. Park, K.-K.; Ko, D.-H.; You, Z.; Khan, M. O. F.; Lee, H. J. Steroids 2006, 71, 183.
17. Mousa, S. A.; Bozarth, J. M.; Naik, U. P.; Slee, A. Br. J. Pharmacol. 2001, 133, 331.
18. Prasad, Y. R.; Kumar, P. R.; Ramesh, B. Int. J. Chem. Sci. 2007, 5, 542–548.
19. Krompiec, S.; Bujak, P.; Szczepankiewicz, W. Tetrahedron Lett. 2008, 49, 6071–
6074.
20. Standard reaction procedure. Isomerization of allyl systems: Isomerization was
carried out in screw-capped ampoules, under an argon atmosphere: a mixture
of allyl substrate (3 mmol), catalyst (1 mol % [RuClH(CO)(PPh3)3]), and THF
(1 cm3 per 1 mmol) was stirred for a given period of time (2–4 h). After cooling,
the solvent was evaporated and the residue was used in the cycloaddition
reaction without additional purification. Cycloadditions: To a stirred solution of
1.3 mmol of 2,6-dichlorobenzaldoxime in 10 ml of CH2Cl2 at room
temperature, 1.4 mmol of solid NCS was added. The reaction was initiated by
the addition of one drop of conc. hydrochloric acid. After stirring for 4 h, the
(m, 3H, CAr-H
(OCH2CH2CH2O); 52.0 (CH3CH); 61.3 (OCH2CH2CH2O); 120.5 (CH3CHC); 159.2
(C@N); 129.6; 131.3; 132.4; 135.6 (CAr) MS (ESI) m/z 329.1 [M+4H+Na]2+
)
13C NMR (100 MHz, CDCl3) d = 12.8 ppm (CH3CH); 25.2
.
2-Butoxy-2-ethyl-5,5-dimethyl-1,3-dioxane: IR (film) 2957, 2875, 2734, 1744,
1469, 1364, 1251, 1211, 1149, 1072. CHN: calcd for C12H24O3: C, 66.63; H,
11.18. Found: C, 66.58; H, 11.21. 1H NMR (CDCl3, 600 MHz) d = 1.16 (s, 3H, –
CH3), 0.95 (t, J = 7.3 Hz, 3H, –CH2CH3), 0.96 (t, J = 7.5 Hz, 3H,
–
OCH2CH2CH2CH3), 1.16 (s, 3H, –CH3), 1.41–1.47 (m, 2H, –OCH2CH2CH2CH3),
1.58–1.63 (m, 2H, –OCH2CH2CH2CH3), 1.75 (q, J = 7.5 Hz, 2H, –CH2CH3), 3.24 (d,
J = 10.4 Hz, 6.6 Hz, 2H, –OCHaHbC(CH3)2CHaHbO–), 3.40 (t, J = 6.6 Hz, 2H, –
OCH2CH2CH2CH3), 3.80 (d, J = 10.4 Hz, 2H, –OCHaHbC(CH3)2CHaHbO–). 13C NMR
(CDCl3, 150 MHz) d = 7.4 (–OCH2CH3), 14.0 (–OCH2CH2CH2CH3), 19.7
(–OCH2CH2CH2CH3), 22.1 (–CH3), 22.7 (–CH3), 28.5 (–CH2CH3), 29.1
(–OCH2CH2CH2O–), 32.0 (–OCH2CH2CH2CH3), 62.0 (–OCH2CH2CH2CH3), 69.7
(–OCH2CH2CH2O–), 111.9 (CIV). GC–MS (70 eV), m/z (int [%]): 216 (<1), 187 (6),
144 (12), 143 (69), 131 (60), 75 (70), 69 (52), 56 (100).