M. D. Rosen et al. / Tetrahedron Letters 50 (2009) 1219–1221
1221
13. DaSilveira Neto, B. A.; Lopes, A. S.; Wust, M.; Cost, V. E. U.; Ebeling, G.; Dupont,
J. Tetrahedron Lett. 2005, 46, 6843–6846.
14. Pesin, V. G.; Sergeev, V. A.; Khaletskii, A. M. Zh. Obsch. Khim. 1964, 34, 1263–
1266.
15. Fray, J. M.; Cooper, K.; Parry, M. J.; Richardson, K.; Steele, J. J. Med. Chem. 1995,
38, 3514–3523.
phenylenediamines into fully functionalized benzimidazole-4-sul-
fonamides was demonstrated. This methodology is tolerant of a wide
variety of aryl, heteroaryl, and alkyl substitution, and is suitable for
the preparation of diverse sets of benzimidazole sulfonamides.
16. Representative Procedure for Reduction of 2,1,3-Benzothiadiazoles-4-sulfonamides
to Phenylenediamines: 2,3-Diamino-N-phenyl-benzenesulfonamide hydro-
Acknowledgments
chloride (12).
A mixture of 9 (1.5 g, 5.2 mmol) and AcOH (20 mL) was
warmed to 50 °C with stirring, then zinc dust (1.7 g, 26 mmol) was added in
portions over 10 min. The reaction mixture was stirred for 1 h, and then was
allowed to cool to room temperature. The mixture was diluted with MeOH and
filtered through Celite, rinsing well with MeOH, and filtrate was concentrated.
The residue was partitioned between saturated aqueous NaHCO3 (150 mL) and
EtOAc (100 mL), and the organic phase was collected. The aqueous phase was
extracted with two additional volumes of EtOAc (100 mL). The combined
organic phases were dried with Na2SO4 and concentrated to give 1.5 g of a
crude yellow solid. This material was suspended in MeOH (15 mL) and cooled
to 0 °C, then HCl (4.0 M in dioxane, 6.5 mL, 26 mmol) was added, and a green
solution was obtained. This solution was concentrated, and the residue was
triturated well with Et2O to provide the hydrochloride salt 12 as a solid (1.3 g,
84%). This material was sufficiently pure to be used in the subsequent step (92-
94%, HPLC). 1H NMR (600 MHz, DMSO-d6) d 10.55 (s, 1H), 7.51 (d, J = 8.0 Hz,
1H), 7.31 (d, J = 7.6 Hz, 1H), 7.22 (t, J = 7.9 Hz, 2H), 7.07 (d, J = 8.6 Hz, 2H), 6.99
(t, J = 7.4 Hz, 1H), 6.67 (t, J = 7.9 Hz, 1H).; 13C NMR (150 MHz, DMSO-d6) d
139.7, 137.2, 129.2, 129.1, 128.4, 123.8, 121.7, 120.3, 119.2, 115.4; MS (ESI/CI)
m/z 264.1 [MH]+. Anal. Calcd for C12H14ClN3O2S: C, 48.08; H, 4.71; N, 14.02.
Found: C, 47.98; H, 5.17; N, 14.04.
We are grateful for a CORD Fellowship for Z.M.S. from Johnson &
Johnson Corporate Office of Science and Technology. We also thank
Dr. Jiejun Wu for helpful discussions regarding 1H and 13C NMR
spectra of tautomeric benzimidazoles.
Supplementary data
Supplementary data associated with this article can be found, in
References and notes
1. Sneader, W. Drug Discovery: A History; John Wiley and Sons: West Sussex, 2005.
2. El-Atrouni, W. I.; Temesgen, Z. Drugs Today 2007, 43, 671–679.
3. Surleraux, D. L. N. G.; Tahri, A.; Verschueren, W. G.; Pille, G. M. E.; de Kock, H. A.
Jonckers, T. H. M.; Peeters, A.; De Meyer, S.; Azijn, H.; Pauwels, R.; de Bethune,
M.; King, N. M.; Prabu-Jeyabalan, M.; Schiffer, C. A.; Wigerinck, P. B. T. P. J. Med.
Chem. 2005 48, 1813–1822.
17. Representative procedure for benzimidazole formation: 2-Phenyl-1H-benzimida-
zole-4-sulfonic acid phenylamide (13b). Benzaldehyde (36 lL, 0.35 mmol) was
added to a mixture of 12 (0.10 g, 0.33 mmol), Na2S2O5 (0.070 g, 0.37 mmol),
and DMA (2 mL), and the mixture was stirred at 80 °C for 16 h. The mixture
was allowed to cool to room temperature, then was diluted with EtOAc (25 mL)
and filtered. The solution was washed sequentially with equal volumes of
saturated aqueous NaHCO3, water, and brine, then was dried with Na2SO4 and
concentrated. Chromatographic purification (SiO2, hexanes/EtOAc, 95:5 to
60:40 gradient) provided the titled compound as a solid (0.10 g, 88%). 1H NMR
(500 MHz, DMSO-d6, mixture of tautomers) d 13.30–13.55 (br s, 1H), 9.65–
10.80 (br s, 1H), 8.35 (br s, 2H), 7.78 (br s, 1H), 7.68 (d, J = 7.6 Hz, 1H), 7.55–
7.64 (m, 3H), 7.32 (t, J = 7.8 Hz, 1H), 7.02–7.20 (br m, 4H), 6.76–6.98 (br s, 1H);
13C NMR (150 MHz, acetone-d6, complex mixture of tautomers, shifts
4. Satyavan, S. Adv. Drug Res. 1994, 25, 103–172.
5. Kalaitzakis, E.; Bjoernsson, E. Ther. Clin. Risk Manage. 2007, 3, 653–663.
6. Venable, J. D.; Cai, H.; Chai, W.; Dvorak, D. A.; Grice, C. A.; Jablonowski, J. A.;
Shah, C. R.; Kwok, A. K.; Ly, K. S.; Pio, B.; Wei, J.; Desai, P. J.; Jiang, W.; Nguyen,
S.; Ling, P.; Wilson, S.; Dunford, P.; Thurmond, R. L.; Lovenberg, T. W.; Karlsson,
L.; Carruthers, N. I.; Edwards, J. P. J. Med. Chem. 2005, 48, 8289–8298.
7. Borza, I.; Kolok, S.; Gere, A.; Nagy, J.; Fodor, L.; Galgoczy, K.; Fetter, J.; Bertha, F.;
Agai, B.; Csilla, H.; Farkas, S.; Domany, G. Bioorg. Med. Chem. Lett. 2006, 16,
4638–4640.
8. Ishida, T.; Suzuki, T.; Hirashima, S.; Mizutani, K.; Yoshida, A.; Ando, I.; Ikeda, S.;
Adachi, T.; Hashimoto, H. Bioorg. Med. Chem. Lett. 2006, 16, 1859–1863.
9. Rosen, M. D.; Hack, M. D.; Allison, B. D.; Phuong, V. K.; Woods, C. R.; Morton, M.
F.; Predergast, C. E.; Barrett, T. D.; Schubert, C.; Li, L.; Wu, X.; Wu, J.; Freedman,
J. M.; Shankley, N. P.; Rabinowitz, M. H. Bioorg. Med. Chem. 2008, 16, 3917–
3925.
assignable are noted)
d 154.3 (major tautomer), 154.1 (minor tautomer),
146.6, 140.7, 139.2, 137.0, 131.6 (major tautomer), 131.5 (minor tautomer),
130.4 (major tautomer), 130.3 (minor tautomer), 130.1 (minor tautomer),
129.9 (major tautomer), 129.8 (minor tautomer), 129.6 (major tautomer),
128.1 (minor tautomer), 128.1 (major tautomer), 125.8 (minor tautomer),
125.3 (minor tautomer), 125.0 (major tautomer), 123.8 (minor tautomer),
123.1(major tautomer), 122.8 (major tautomer), 122.5 (minor tautomer), 122.0
(minor tautomer), 121.5 (major tautomer), 117.1 (major tautomer). MS (ESI)
m/z 350.1 [MH]+. Anal. Calcd for C19H15N3O2S: C, 65.31; H, 4.33; N, 12.03.
Found: C, 64.99; H, 4.68; N, 12.06.
10. Grigoryan, L. A.; Kaldrikyan, M. A.; Stepanyan, N. O.; Aristakesyan, S. A. Arm.
Khim. Zh. 1989, 422, 116–120.
11. Suzuki, T.; Okubo, T.; Okada, A.; Yamashita, Y.; Miyashi, T. Heterocycles 1993,
35, 395.
12. Prashad, M.; Liu, Y.; Repic, O. Tetrahedron Lett. 2001, 42, 2277–2279.