synthesis applied to ketones and aliphatic amines remains a more
difficult reaction. Often with these substrates, the reaction is
carried out stepwise using premade imines or under high
pressure conditions.11 Although recently one-pot procedures
have been developed for the synthesis of R-aminonitriles using
a variety of Lewis acids such as lithium perchlorate,12 scandium
triflate,13 vanadyl triflate,14 zinc halides,15 ytterbium triflate,16
and montmorillonite;17 most of these methods involve the use
of strong acidic conditions, expensive reagents, extended
reaction times, harsh conditions, fast hydrolysis, and tedious
workup leading to the generation of a large amount of waste.
Therefore, more general and milder reaction conditions for
one-pot multicomponent Strecker reactions, particularly those
involving ketones, would be advantageous.
Efficient Three-Component Strecker Reaction of
Aldehydes/Ketones via NHC-Amidate
Palladium(II) Complex Catalysis
Jamie Jarusiewicz, Yvonne Choe, Kyung Soo Yoo,
Chan Pil Park, and Kyung Woon Jung*
Loker Hydrocarbon Research Institute and Department of
Chemistry, UniVersity of Southern California,
Los Angeles, California 90089-0166
ReceiVed January 28, 2009
Recently, we found that N-heterocyclic carbene (NHC)-
amidate palladium(II) complex 1a acts as an effective catalyst
for asymmetric boron-Heck type carbon-carbon bond-
forming reactions under mild conditions.18 In addition, this
palladium(II) complex 1a was converted to the palladium
complex 1b by treating with aqueous AgBF4, and it was found
that the subsequent monomer/dimer equilibrium process
(1b T 1c) readily occurred in the aqueous solution (Scheme
1). Consequently, the catalytic reaction was not inhibited by
coordination of water to palladium metal since the presence
of strongly electron-donating groups such as the NHC,
amidate N, and O would increase the electron density of
palladium and allow for a weak interaction between elec-
trophilic Pd and water. Therefore, due to the stability toward
aqueous conditions and easy formation of a palladium open
site, we prepared new NHC-amidate palladium(II) analogue
2 having an ester moiety as a portable chelating group. We
herein report the results of its application in the synthesis of
R-amino nitriles from the corresponding aldehydes or ketones
and amines with trimethylsilyl cyanide (TMSCN) in dichlo-
romethane solvent. These reactions required no further
purification in most cases.
A simple and efficient one-pot, three-component method has
been developed for the synthesis of R-aminonitriles. This
Strecker reaction is applicable for aldehydes and ketones with
aliphatic or aromatic amines and trimethylsilyl cyanide in
the presence of a palladium Lewis acid catalyst in dichlo-
romethane solvent at room temperature.
The Strecker reaction, which employs aldehydes or ketones,
amines, and a cyanide source, is a well-established route for
the preparation of R-aminonitriles, which are versatile interme-
diate compounds and are particularly useful in the preparation
of R-amino acids and other biologically relevant molecules, such
as nitrogen-containing heterocycles.1 Successful examples of
this reaction have been demonstrated using titanium,2 iron,3 and
zirconium4 catalysts, Schiff bases,5 Lewis bases,6 gallium
triflate,7 ionic liquids,8 ꢀ-cyclodextrin,9 and other nonmetal
catalysts.10 However, most one-pot multicomponent variations
of the Strecker reaction involve aldehydes, and the Strecker
The preparation of ligand precursor 6 was carried out as
illustrated in Scheme 2. Treatment of 4, derived from the
(8) Yadav, J. S.; Reddy, B. V. S.; Eshwaraiah, B.; Srinivas, M.; Vishnu-
murthy, P. New J. Chem. 2003, 27, 462–465.
(9) Surendra, K.; Krishnaveni, N. S.; Mahesh, A.; Rao, K. R. J. Org. Chem.
2006, 71, 2532–2534.
(10) (a) Iyer, M. S.; Gigstad, K. M.; Namdev, N. D.; Lipton, M. J. Am. Chem.
Soc. 1996, 118, 4910–4911. (b) Sigman, M.; Jacobsen, E. N. J. Am. Chem. Soc.
1998, 120, 5315–5316. (c) Sigman, M. S.; Vachal, P.; Jacobsen, E. N. Angew.
Chem., Int. Ed. 2000, 39, 1279–1281. (d) Liu, B.; Feng, X.; Chen, F.; Zhang,
G.; Cui, X.; Jiang, Y. Synlett 2001, 10, 1551–1554.
(11) (a) Warmuth, R.; Munsch, T. E.; Stalker, R. A.; Li, B.; Beattey, A.
Tetrahedron 2001, 57, 6383–6397. (b) Matsumoto, K.; Kim, J. C.; Iida, H.;
Hamana, H.; Kumamoto, K.; Kotsuki, H.; Jenner, G. HelV. Chim. Acta 2005,
88, 1734–1754. (c) Kumamoto, K.; Iida, H.; Hamana, H.; Kotsuki, H.;
Matsumoto, K. Heterocycles 2005, 66, 675–681.
(12) Prasad, B. A.; Bhanu; Bisai, A.; Singh, V. K. Tetrahdron Lett. 2004,
45, 9565–9567.
(13) Kobayashi, S.; Busujima, T.; Nagayama, S. Chem. Commun. 1998, 9,
981–982.
(14) De, S. K. Synth. Commun. 2005, 35, 1577–1582.
(15) Kazemeini, A.; Azizi, N.; Saidi, M. R. Russ. J. Org. Chem. 2006, 42,
48–51.
(16) Huguenot, F.; Brigaud, T. J. Org. Chem. 2006, 71, 7075–7078.
(17) Yadav, J. S.; Reddy, B. V. S.; Eeshwaraian, B.; Srinivas, M. Tetrahedron
2004, 60, 1767–1771.
(1) (a) Yet, L. Angew. Chem., Int. Ed. 2001, 40, 875–877. (b) Gro¨ger, H.
Chem. ReV. 2003, 103, 2795–2827. (c) Spino, C. Angew. Chem., Int. Ed. 2004,
43, 1764–1766. (d) Vilaivan, T.; Bhanthumnavin, W.; Sritana-Anant, Y. Curr.
Org. Chem. 2005, 9, 1315. (e) Ohfune, Y.; Shinada, T. Eur. J. Org. Chem. 2005,
24, 5127–5143. (f) Friestad, G. K.; Mathies, A. K. Tetrahedron 2007, 63, 2541–
2569. (g) Connon, S. J. Angew. Chem., Int. Ed. 2008, 47, 1176–1178.
(2) (a) Corey, E. J.; Grogan, M. Org. Lett. 1999, 1, 157–160. (b) Josephsohn,
N. S.; Kuntz, K. W.; Snapper, M. L.; Hoveyda, A. H. J. Am. Chem. Soc. 2001,
123, 11594–11599. (c) Banphavichit, V.; Mansawat, W.; Bhanthumnavin, W.;
Vilaivan, T. Tetrahedron 2004, 60, 10559–10568. (d) Blacker, J.; Clutterbuck,
L. A.; Crampton, M. R.; Grosjean, C.; North, M. Tetrahedron: Asymmetry 2006,
17, 1449–1456.
(3) Khan, N. H.; Agrawal, S.; Kureshy, R. I.; Abdi, S. H. R.; Singh, S.;
Suresh, E.; Jasra, R. V. Tetrahedron Lett. 2008, 49, 640–644.
(4) Ishitani, H.; Komiyama, S.; Hasegawa, Y.; Kobayashi, S. J. Am. Chem.
Soc. 2000, 122, 762–766.
(5) (a) Sigman, M. S.; Jacobsen, E. N. J. Am. Chem. Soc. 1998, 120, 4901–
4902. (b) Vachal, P.; Jacobsen, E. N. J. Am. Chem. Soc. 2002, 124, 10012–
10014.
(6) Takahashi, E.; Fujisawa, H.; Yanai, T.; Mukaiyama, T. Chem. Lett. 2005,
34, 604–605.
(7) Prakash, G. K. S.; Mathew, T.; Panja, C.; Alconcel, S.; Vaghoo, H.; Do,
C.; Olah, G. A. Proc. Nat. Acad. Sci. U.S.A. 2007, 104, 3703–3706.
(18) Sakaguchi, S.; Yoo, K. S.; O’Neill, J.; Lee, J. H.; Stewart, T.; Jung,
K. W. Angew. Chem., Int. Ed. 2008, 47, 9326–9329.
10.1021/jo900163w CCC: $40.75
Published on Web 03/05/2009
2009 American Chemical Society
J. Org. Chem. 2009, 74, 2873–2876 2873