Biochemistry
Article
(12) Pelto, R. B., and Pratt, R. F. (2008) Kinetics and mechanism of
inhibition of a serine β-lactamase by O-aryloxycarbonyl hydroxamates.
Biochemistry 47, 12037−12046.
(13) Tilvawala, R., and Pratt, R. F. (2013) Covalent inhibition of
serine β-lactamases by novel hydroxamic acid derivatives. Biochemistry
52, 3712−3720.
(14) Huttunen, K. M., Raunio, H., and Rautio, J. (2011) Prodrugs:
From serendipity to rational design. Pharmacol. Rev. 63, 750−771.
(15) Ferres, H. (1983) Pro-drugs of β-lactam antibiotics. Drugs Today
19, 499−519.
(16) Bryskier, A. (2005) β-Lactam prodrugs. In Antimicrobial Agents
(Bryskier, A., Ed.) Chapter 11, American Society for Microbiology
Press, Washington, DC.
(17) Testa, B. (2009) Prodrugs: Bridging pharmacodynamics/
pharmacokinetic gaps. Curr. Opin. Chem. Biol. 13, 338−344.
(18) Zinner, G., Ruthe, M., and Vollrath, R. (1971) Synthesis of 1,4-
dioxo-3,4-dihydro-benzo[d]-1,2-oxazin (O,N)-phthaloyl-hydroxyl-
amine. Synthesis, 148−149.
(19) Guimond, N., Gorelsky, S. I., and Fagnou, K. (2011)
Rhodium(III)-catalyzed heterocycle synthesis using an internal
oxidant: Improved reactivity and mechanistic studies. J. Am. Chem.
Soc. 133, 9449−9457.
inhibitors leads to two different inhibitors which, presumably,
would have different enzyme specificity. Incorporation of a β-
lactam into Nu of 15 would be a nice final touch.
ASSOCIATED CONTENT
■
S
* Supporting Information
Synthetic details for the preparation of compounds 8 and 9 and
Figures S1−S5 illustrating the products and kinetics of
spontaneous reactions of 5 and 7. This material is available
AUTHOR INFORMATION
■
Corresponding Author
Fax: (860) 685-2211.
Funding
This research was supported by National Institutes of Health
Grant AI-17986 (R.F.P.) and by Wesleyan University.
Notes
(20) Kuzmic, P. (1996) Program DYNAFIT for the analysis of
enzyme kinetic data: Application to HIV proteinase. Anal. Biochem.
237, 260−273.
The authors declare no competing financial interest.
ABBREVIATIONS
■
(21) Bebrone, C., Moali, C., Mahy, F., Rival, S., Docquier, J. D.,
BSA, bovine serum albumin; CENTA, 7β-[(thien-2-yl)-
acetamido]-3-[(4-nitro-3-carboxyphenylthio)methyl]-3-ce-
phem-4-carboxylic acid; DCM, dichloromethane; DMF,
dimethylformamide; DMSO, dimethyl sulfoxide; ESMS,
electrospray mass spectrometry; FTIR, Fourier transform
infrared; MOPS, 3-(N-morpholino)propanesulfonic acid; mp,
melting point; NMR, nuclear magnetic resonance; TEA,
triethylamine; TFA, trifluoroacetic acid.
̀
Rossolini, G. M., Fastrez, J., Pratt, R. F., Frere, J.-M., and Galleni, M.
(2001) CENTA as a chromogenic substrate for studying β-lactamases.
Antimicrob. Agents Chemother. 45, 1868−1871.
(22) O’Callaghan, C. H., Morris, A., Kirby, S. M., and Shingler, A. H.
(1972) Novel method of detecting β-lactamases by using a
chromogenic cephalosporin substrate. Antimicrob. Agents Chemother.
1, 283−288.
(23) Cabaret, D., Adediran, S. A., Pratt, R. F., and Wakselman, M.
(2003) New substrates for β-lactam-recognizing enzymes: Aryl
malonamates. Biochemistry 42, 6719−6725.
(24) Kunitake, T., Okahata, Y., Ando, R., and Hirotsu, S. (1976)
Multifunctional hydrolytic catalysis. V. The reaction of o-substituted
benzohydroxamic acids and p-nitrophenyl acetate. Bull. Chem. Soc. Jpn.
49, 2547−2552.
REFERENCES
■
(1) Drawz, S. M., and Bonomo, R. A. (2010) Three decades of β-
lactamase inhibitors. Clin. Microbiol. Rev. 23, 160−201.
(2) Worthington, R. J., and Melander, C. (2013) Overcoming
resistance to β-lactamase inhibitors. J. Org. Chem. 78, 4207−4213.
(3) Shlaes, D. M. (2013) New β-lactam−β-lactamase inhibitor
combinations in clinical development. Ann. N.Y. Acad. Sci. 1277, 105−
114.
(25) Khan, M. N. (1996) Kinetic evidence for the occurrence of
stable intermediates in the cleavage of N-hydroxyphthalimide under
N-methylhydroxylamine buffer. Indian J. Chem. 358, 1275−1281.
́
(26) Andres, G. O., Granados, A. M., and de Ross, R. H. (2001)
(4) Livermore, D. M., and Mushtaq, S. (2013) Activity of biopenem
(RFX 2003) combined with the boronate β-lactamase inhibitor RPX
7009 against carbapenem-resistant Enterobacteriaceae. J. Antibiot.
Chemother. 68, 1825−1831.
Kinetic study of the hydrolysis of phthalic anhydride and aryl hydrogen
phthalates. J. Org. Chem. 66, 7653−7657.
̀
(27) Matagne, A., Dubus, A., Galleni, M., and Frere, J.-M. (1999)
The β-lactamase cycle: A tale of selective pressure and bacterial
ingenuity. Nat. Prod. Rep. 16, 1−19.
(5) Pratt, R. F. (2012) β-Lactamase inhibitors: Non β-lactams. In β-
̀
Lactamases (Frere, J.-M., Ed.) Chapter 10, Nova Science, New York.
(28) Fink, A. L., and Page, M. I. (2012) The mechanisms of catalysis
(6) Ghuysen, J.-M. (1991) Serine β-lactamases and penicillin-binding
proteins. Annu. Rev. Microbiol. 45, 37−67.
by β-lactamases. In β-Lactamases (Frer
Science, New York.
(29) Buynak, J. D. (2012) β-Lactams as inhibitors of β-lactamases. In
β-Lactamases (Frere, J.-M., Ed.) Chapter 10, Nova Science, New York.
̀
e, J.-M., Ed.) Chapter 7, Nova
(7) Bebrone, C. (2007) Metallo-β-lactamases (classification, activity,
genetic organization, structure, zinc coordination) and their super-
family. Biochem. Pharmacol. 74, 1686−1701.
̀
(30) Page, M. G. P. (1993) The kinetics of non-stoichiometric bursts
of β-lactam hydrolysis catalyzed by class C β-lactamases. Biochem. J.
295, 295−304.
(8) Ganta, S. R., Perumal, S., Pagadala, S. R. R., Samuelson, D.,
Spencer, J., Pratt, R. F., and Buynak, J. D. (2009) Approaches to the
simultaneous inactivation of metallo- and serine β-lactamases. Bioorg.
Med. Chem. Lett. 19, 1618−1622.
(9) Pratt, R. F. (1992) β-Lactamase inhibition. In Chemistry of β-
Lactams (Page, M. I., Ed.) Chapter 7, Chapman and Hall, London.
(10) Papp-Wallace, K. M., Bethel, C. R., Distler, A. M., Kasuboski, C.,
Taracila, M., and Bonomo, R. A. (2010) Inhibitor resistance in the
KPC-2 β-lactamase, a preeminent property of this β-lactamase.
Antimicrob. Agents Chemother. 54, 890−897.
(11) Wyrembak, P. N., Babaoglu, K., Pelto, R. B., Shoichet, B. K., and
Pratt, R. F. (2007) O-Aryloxycarbonyl hydroxamates: New β-
lactamase inhibitors that cross-link the active site. J. Am. Chem. Soc.
129, 9548−9549.
(31) Dubus, A., Normark, S., Kania, M., and Page, M. G. P. (1995)
Role of asparagine 152 in catalysis of β-lactam hydrolysis by Escherichia
coli. AMP C β-lactamase studied by site-directed mutagenesis.
Biochemistry 34, 7757−7764.
(32) Kumar, S., Adediran, S. A., Nukaga, M., and Pratt, R. F. (2004)
Kinetics of turnover of cefotaxime by the Enterobacter cloacae P99 and
GCI β-lactamases: Two free enzyme forms of the P99 β-lactamase
detected by a combination of pre- and post-steady state kinetics.
Biochemistry 43, 2664−2672.
(33) Bauer, L., and Exner, O. (1974) The chemistry of hydroxamic
acids and N-hydroxyimides. Angew. Chem., Int. Ed. 13, 376−384.
7069
dx.doi.org/10.1021/bi400873r | Biochemistry 2013, 52, 7060−7070