efficiency (entry 3). GaCl3, the catalyst of choice for [4 +
1] cycloaddition between R,ꢀ-unsaturated carbonyl com-
pounds and isocyanides,20b was found to be inefficient with
iminonitrile 2a (entry 4). Finally, heating a toluene solution
of 3a and 2a (c 0.7 M) in the presence of 10 mol% of AlCl3
at 90 °C was found to be optimum, providing pyrrole 1a in
88% yield (Table 1, entry 5).
Table 2. AlCl3-Catalyzed [4 + 1] Cycloaddition of
R,ꢀ-Unsaturated Imidoyl Cyanides with Isocyanidesa
The scope of this novel synthesis of 2-amino-5-cyanopy-
rroles was next examined with different R,ꢀ-unsaturated
imidoyl cyanides (2a-e) and isocyanides (3a-d). The results
are depicted in Table 2. The reaction proceeded effectively
with aromatic (3a) and aliphatic isocyanides (3b-3d) to give
the corresponding 5-amino-2-cyanopyrroles (1b-j) in good
to excellent yields. R,ꢀ-Unsaturated imidoyl cyanides bearing
aromatic or aliphatic substituents at the R or ꢀ position react
smoothly to give highly substituted pyrroles. The 2-cyano-
1-azadiene 2c, having substituents at both the R and ꢀ
positions, was converted to the corresponding pentasubsti-
tuted 5-amino-2-cyanopyrrole 1d in 74% yield (entry 3).
Pyrroles 1h and 1i, having a p-NO2-phenylethyl group at
the N-1 position, were obtained in yields of 78% and 75%,
respectively (entries 7 and 8). N-Cyclopropylated hetero-
cycles are important structural units in medicinal chemistry;
however, only limited synthetic methods are available.22 It
is thus interesting to note that the N-cyclopropyl iminonitrile
2e participated readily in the reaction to afford directly the
N-cyclopropyl pyrrole 1j in 81% yield (entry 9). In all cases,
pyrroles were obtained as a single product without concurrent
(13) For reviews, see: (a) Marcaccini, S.; Torroba, T. Post-condensation
Modifications of the Passerini and Ugi Reactions; Zhu, J., Bienayme´, H.,
Eds.; Wiley-VCH: Weinheim, 2005; pp 33-75. (b) Akritopoulou, I.; Djuric,
S. W. Heterocycles 2007, 73, 125–147.
(14) (a) Ngouansavanh, T.; Zhu, J. Angew. Chem., Int. Ed. 2007, 46,
5775–5778. (b) Ngouansavanh, T.; Zhu, J. Angew. Chem., Int. Ed. 2006,
45, 3495–3497. See also: (c) Leon, F.; Rivera, D. G.; Wessjohann, L. A. J.
Org. Chem. 2008, 73, 1762–1767.
(15) Fontaine, P.; Chiaroni, A.; Masson, G.; Zhu, J. Org. Lett. 2008,
10, 1509–1512.
(16) Synthesis of pyrrole from R,ꢀ-unsaturated aldehydes: Fuchibe, K.;
Ono, D.; Akiyama, T. Chem. Commun. 2006, 2271–2273.
(17) (a) Van Leusen, A. M.; Siderius, H.; Hoogenboom, B. E.; Van
Leusen, D. Tetrahedron Lett. 1972, 13, 5337–5340. (b) Barton, D. H. R.;
Zard, S. Z. J. Chem. Soc., Chem. Commun. 1985, 1098–1099. (c) Takaya,
H.; Kojima, S.; Murahashi, S.-I. Org. Lett. 2001, 3, 421–424. (d) Kamijo,
S.; Kanazawa, C.; Yamamoto, Y. J. Am. Chem. Soc. 2005, 127, 9260–
9266. (e) Misra, N. C.; Panda, K.; Ila, H.; Junjappa, H. J. Org. Chem. 2007,
72, 1246–1251. (f) Lygin, A. V.; Larionov, O. V.; Korotkov, V. S.; de
Meijere, A. Chem. Eur. J. 2009, 15, 227–236.
(18) For a review, see: Marcaccini, S.; Torroba, T. Org. Prep. Proc.
Int. 1993, 25, 143–208.
(19) Marchand, E.; Morel, G.; Sinbandhit, S. Eur. J. Org. Chem. 1999,
1729–1738.
a Reaction conditions: R,ꢀ-unsaturated imidoyl cyanides (1.0 mmol),
isocyanide (1.1 mmol), AlCl3 (0.1 mmol), toluene (1.4 mL), 90 °C. b Yield
refer to chromatographically pure product.
(20) Examples of [4 + 1] cycloaddition of R,ꢀ-unsaturated carbonyls
with isocyanides: (a) Ito, Y.; Kato, H.; Saegusa, T. J. Org. Chem. 1982,
47, 741–743. (b) Oshita, M.; Yamashita, K.; Tobisu, M.; Chatani, N. J. Am.
Chem. Soc. 2005, 127, 761–766, and references therein.
(21) Examples of [4 + 1] cycloaddition of nitroalkenes with isocyanides:
(a) Foucaud, A.; Razorilalana-Rabearivony, C.; Loukakou, E.; Person, H.
J. Org. Chem. 1983, 48, 3639–3644. (b) Person, H.; Del Aguila Pardo, M.;
Foucaud, A. Tetrahedron Lett. 1980, 21, 281–284. (c) Saegusa, T.;
Kobayashi, S.; Ito, Y.; Morino, I. Tetrahedron 1972, 28, 3389–3392. (d)
Fe´dou, N. M.; Parsons, P. J.; Viseux, E. M. E.; Whittle, A. J. Org. Lett.
2005, 7, 3179–3182.
formation of byproducts issued from the rearrangment of the
nitrilium intermediate or isocyanide insertion to the resulting
pyrrole.19,23
Removal of the N-p-NO2-phenylethyl group from 1h under
thermal basic conditions24 afforded a low yield of the desired
N-unsubstituted pyrrole 6. We found that under microwave
irradiation conditions (DBU, MeCN, MW, 300 W), 1h was
(22) (a) Gagnon, A.; St-Onge, M.; Little, K.; Duplessis, M.; Barabe´, F.
J. Am. Chem. Soc. 2007, 129, 44–45. (b) Tsuritani, T.; Strotman, N. A.;
Yamamoto, Y.; Kawasaki, M.; Yasuda, N.; Mase, T. Org. Lett. 2008, 10,
1653–1655. (c) Be´nard, S.; Neuville, L.; Zhu, J. J. Org. Chem. 2008, 73,
6441–6444, and references therein.
Org. Lett., Vol. 11, No. 7, 2009
1557