1338
Lal Dhar S Yadav et al. / Tetrahedron Letters 50 (2009) 1335–1339
the reaction mixture at 60 oC to yield chemically and pharmaceu-
tically interesting entities 3,5-dibenzyl-1,3-thiazines 5a–d (Table
2).29 This illustrates the potential of these allyl dithiocarbamates
in heterocyclic synthesis.
In summary, we have described a one-pot, efficient, and highly
stereoselective green synthetic protocol for hitherto unknown [E]-
and [Z]-allyl dithiocarbamates via the nucleophilic displacement
(SN20) of BH acetates by dithiocarbamate anions in water. This
one-pot protocol avoids the use of bases and toxic organic solvents
by utilizing water, which plays a dual role, as a solvent and pro-
moter. Furthermore, the utility of these allyl dithiocarbamates in
heterocyclic chemistry is demonstrated by their base-catalyzed
intramolecular cyclization into chemically and pharmaceutically
relevant functionalized 1,3-thiazines.
1990, 31, 4155–4158; (e) Chinchilla, R.; Najera, C. Chem. Rev. 2000, 100, 1891–
1928.
14. (a) Bakuzis, P.; Bakuzis, M. L. F.; Weingartner, T. F. Tetrahedron Lett. 1978, 19,
2371–2374; (b)The Total Synthesis of Natural Products; ApSimon, J., Ed.; John
Wiley: New York, 1988; Vol. 8, p 102.
15. (a) Corey, E. J.; Erickson, B. W.; Noyori, R. J. Am. Chem. Soc. 1971, 93, 1724–
1729; (b)Prostaglandin Synthesis; Bindra, J. S., Bindra, R., Eds.; Academic Press:
New York, 1977.
16. de Montarby, L.; Tourbah, H.; Gree, R. Bull. Soc. Chim. Fr. 1989, 126, 419–431.
17. (a) Baylis, A. B.; Hillaman, M. E. D. Offenlegungsschrift 2155113, U.S. Patent
3,743,669, 1972; Chem. Abstr. 1972, 77, 34174.; (b)Organic Reactions; Ciganek,
E., Ed.; Wiley: New York, NY, 1997; Vol. 51, pp 201–305.
18. (a) Singh, V.; Batra, S. Tetrahedron 2008, 64, 4511–4574; (b) Basavaiah, D.; Rao,
K. V.; Reddy, R. J. Chem. Soc. Rev. 2007, 36, 1581–1588; (c) Basavaiah, D.; Rao, A.
J.; Satyanarayana, T. Chem. Rev. 2003, 103, 811–891; (d) Langer, P. Angew.
Chem., Int. Ed. 2000, 39, 3049–3052; (e) Basavaiah, D.; Rao, P. D.; Hyma, R. S.
Tetrahedron 1996, 52, 8001–8062; (f) Basavaiah, D.; Roy, S. Org. Lett. 2008, 10,
1819–1822; (g) Basavaiah, D.; Reddy, K. R.; Kumaragurubaran, N. Nat. Protoc.
2007, 2, 2665–2676.
19. (a) Basavaiah, D.; Reddy, R. J. Org. Biomol. Chem. 2008, 6, 1034–1039; (b) Yadav,
J. S.; Reddy, B. V. S.; Basak, A. K.; Narsaiah, A. V.; Prabhakar, A.; Jagadeesh, B.
Tetrahedron Lett. 2005, 46, 639–641; (c) Shafiq, Z.; Liu, L.; Liu, Z.; Wang, D.;
Chen, Y.-J. Org. Lett. 2007, 9, 2525–2528; (d) Reddy, C. R.; Kiranmai, N.; Babu, G.
S. K.; Sarma, G. D.; Jagadeesh, B.; Chandrasekhar, S. Tetrahedron Lett. 2007, 48,
215–218; (e) Ollevier, T.; Mwene-Mbeja, T. M. Tetrahedron 2008, 64, 5150–
5155.
Acknowledgment
We sincerely thank SAIF, Punjab University, Chandigarh for
providing microanalyses and spectra.
20. (a) Basavaiah, D.; Satyanarayana, T. Tetrahedron Lett. 2002, 43, 4301–4303; (b)
Yadav, J. S.; Gupta, M. K.; Pandey, S. K.; Reddy, B. V. S.; Sarma, A. V. S.
Tetrahedron Lett. 2005, 46, 2761–2763; (c) Li, J.; Wang, X.; Zhang, Y. Tetrahedron
Lett. 2005, 46, 5233–5237; (d) Paira, M.; Mandal, S. K.; Roy, S. C. Tetrahedron
Lett. 2008, 49, 2432–2434.
21. Kabalka, G. W.; Venkataiah, B.; Dong, G. Tetrahedron Lett. 2003, 44, 4673–4675.
22. (a) Liu, Y.; Xu, D.; Xu, Z.; Zhang, Y. Heteroat. Chem. 2008, 19, 188–198; (b) Das,
B.; Chowdhury, N.; Damodar, K.; Banerjee, J. Chem. Pharm. Bull. 2007, 55, 1274–
1276; (c) Cha, M. J.; Song, Y. S.; Lee, K.-J. Bull. Korean Chem. Soc. 2006, 27, 1900–
1902; (d) Kamimura, A.; Morita, R.; Matsuura, K.; Omata, Y.; Shirai, M.
Tetrahedron Lett. 2002, 43, 6189–6191; (e) Binay, P.; Henary, J. C.; Vidal, V.;
Genet, J. P.; Dellis, P. Fr. Demande FR2772027, 1999, 23 p; Chem. Abstr. 1999,
131, 170171.; (f) Deane, P. O.; Guthrie-Strachan, J. J.; Kaye, P. T.; Whittaker, R. E.
Synth. Commun. 1998, 28, 2601–2611.
References and notes
1. Kondo, T.; Mitsudo, T.-A. Chem. Rev. 2000, 100, 3205–3220.
2. (a) Norcross, R. D.; Paterson, I. Chem. Rev. 1995, 95, 2041–2114; (b) Faulkner, D.
J. Nat. Prod. Rep. 1995, 12, 223–269; (c) Liu, G.; Link, J. T.; Pei, Z.; Reilly, E. B.;
Leitza, S.; Nguyen, B.; Marsh, K. C.; Okasinski, G. F.; von Geldern, T. W.; Ormes,
M.; Fowler, K.; Gallatin, M. J. Med. Chem. 2000, 43, 4025–4040; (d) Sawyer, J. S.;
Schmittling, E. A.; Palkowitz, J. A.; Smith, W. J., III J. Org. Chem. 1998, 63, 6338–
6343; (e) Trost, B. M. Chem. Rev. 1978, 78, 363–382; (f) Kita, Y.; Iio, K.;
Kawaguchi, K.-I.; Fukuda, N.; Takeda, Y.; Ueno, H.; Okunaka, R.; Higuchi, K.;
Tsujino, T.; Fujioka, H.; Akai, S. Chem. Eur. J. 2000, 6, 3897–3905.
3. (a) Dhooghe, M.; De Kimpe, N. Tetrahedron 2006, 62, 513–535; (b) Erian, A. W.;
Sherif, S. M. Tetrahedron 1999, 55, 7957–8024.
4. (a) Mukerjee, A. K.; Ashare, R. Chem. Rev. 1991, 91, 1–24; (b) Boas, U.; Gretz, H.;
Christensen, J. B.; Heegaard, P. M. H. Tetrahedron Lett. 2004, 45, 269–272; (c)
Grainger, R. S.; Innocenti, P. Heteroat. Chem. 2007, 18, 568–571; (d) Rudorf, W.-
D. J. Sulfur Chem. 2007, 28, 295–339; (e) Katritzky, A. R.; Singh, S.; Mohapatra, P.
P.; Clemens, N.; Kirichenko, K. ARKIVOK 2005, ix, 63–79.
23. Shrihari, P.; Singh, A. P.; Jain, R.; Yadav, J. S. Synthesis 2006, 2772–2776.
24. (a) Li, C.-J.; Chan, T.-H. In Organic Reactions in Aqueous Media; Wiley: New York,
1997; (b)Organic Synthesis in Water; Grieco, P. A., Ed.; Blackie Academic and
Professional: London, 1998; (c) Lindstrom, U. M. Chem. Rev. 2002, 102, 2751–
2772; (d) Li, C.-J. Chem. Rev. 2005, 105, 3095–3166.
25. (a) Yadav, L. D. S.; Yadav, S.; Rai, V. K. Green Chem. 2006, 8, 455–458; (b) Yadav,
L. D. S.; Yadav, B. S.; Rai, V. K. Synthesis 2006, 1868–1872; (c) Yadav, L. D. S.;
Patel, R.; Rai, V. K.; Srivastava, V. P. Tetrahedron Lett. 2007, 48, 7793–7795; (d)
Yadav, L. D. S.; Rai, V. K. Synlett 2007, 1227–1230; (e) Yadav, L. D. S.; Patel, R.;
Srivastava, V. P. Synlett 2008, 1789–1792; (f) Yadav, L. D. S.; Srivastava, V. P.;
Patel, R. Tetrahedron Lett. 2008, 49, 5652–5654; (g) Yadav, L. D. S.; Awasthi, C.;
Rai, A. Tetrahedron Lett. 2008, 49, 6360–6363.
5. (a) Caldas, E. D.; Conceicào, M. H.; Miranda, M. C. C.; de Souza, L. C. K. R.; Lima,
J. F. J. Agric. Food Chem. 2001, 49, 4521–4525; (b) Bowden, K.; Chana, R. S. J.
Chem. Soc., Perkin Trans. 2 1990, 2163–2166; (c) Ronconi, L.; Marzano, C.;
Zanello, P.; Corsini, M.; Miolo, G.; Macca, C.; Trevisan, A.; Fregona, D. J. Med.
Chem. 2006, 49, 1648–1657; (d) Elgemeie, G. H.; Sayed, S. H. Synthesis 2001,
1747–1771; (e) Goel, A.; Mazur, S. J.; Fattah, R. J.; Hartman, T. L.; Turpin, J. A.;
Huang, M.; Rice, W. G.; Appella, E.; Inman, J. K. Bioorg. Med. Chem. Lett. 2002,
12, 767–770.
6. (a) Chin-Hsien, W. A. N. G. Synthesis 1981, 622; (b) Mizuno, T.; Nishiguchi, I.;
Okushi, T.; Hirashima, T. Tetrahedron Lett. 1991, 32, 6867–6868; (c) Chen, Y. S.;
Schuphan, I.; Casida, J. E. J. Agric. Food Chem. 1979, 27, 709–712; (d) Rafin, C.;
Veignie, E.; Sancholle, M.; Postel, D.; Len, C.; Villa, P.; Ronco, G. J. Agric. Food
Chem. 2000, 48, 5283–5287; (e) Len, C.; Postel, D.; Ronco, G.; Villa, P.; Goubert,
C.; Jeufrault, E.; Mathon, B.; Simon, H. J. Agric. Food Chem. 1997, 45, 3–6.
7. (a) Morf, P.; Raimondi, F.; Nothofer, H.-G.; Schnyder, B.; Yasuda, A.; Wessels, J.
M.; Jung, T. A. Langmuir 2006, 22, 658–663; (b) McClain, A.; Hsieh, Y.-L. J. Appl.
Polym. Sci. 2004, 92, 218–225; (c) Dunn, A. D.; Rudorf, W.-D. Carbon Disulphide
in Organic Chemistry; Ellis Horwood: Chichester, UK, 1989. pp 226–367.
8. (a) Nieuwenhuizen, P. J.; Ehlers, A. W.; Haasnoot, J. G.; Janse, S. R.; Reedijk, J.;
Baerends, E. J. J. Am. Chem. Soc. 1999, 121, 163–168; (b) Thorn, G. D.; Ludwig, R.
A. The Dithiocarbamates and Related Compounds; Elsevier: Amsterdam, 1962.
9. (a) Wood, M. R.; Duncalf, D. J.; Rannard, S. P.; Perrier, S. Org. Lett. 2006, 8, 553–
556; (b) Crich, D.; Quintero, L. Chem. Rev. 1989, 89, 1413–1432; (c) Barton, D. H.
R. Tetrahedron 1992, 48, 2529–2544; (d) Zard, S. Z. Angew. Chem., Int. Ed. 1997,
36, 672–685.
10. Zhang, D.; Chen, J.; Liang, Y.; Zhou, H. Synth. Commun. 2005, 35, 521–526.
11. (a) Tilles, H. J. Am. Chem. Soc. 1959, 81, 714–727; (b) Sugiyama, H. J. Synth. Org.
Chem. Jpn. 1980, 38, 555–563; (c) Walter, W.; Bode, K.-D. Angew. Chem., Int. Ed.
Engl. 1967, 6, 281–293.
12. (a) Azizi, N.; Aryanasab, F.; Torkiyan, L.; Ziyaei, A.; Saidi, M. R. J. Org. Chem.
2006, 71, 3634–3635; (b) Azizi, N.; Pourhasan, B.; Aryanasab, F.; Saidi, M. R.
Synlett 2007, 1239–1242; (c) Azizi, N.; Ebrahimi, F.; Aakbari, E.; Aryanasab, F.;
Saidi, M. R. Synlett 2007, 2797–2800; (d) Azizi, N.; Pourhasan, B.; Aryanasab, F.;
Saidi, M. R. Org. Lett. 2006, 8, 5275–5277; (e) Bhadra, S.; Saha, A.; Ranu, B. C.
Green Chem. 2008, 10, 1224–1230; (f) Ranu, B. C.; Saha, A.; Banerjee, S. Eur. J.
Org. Chem. 2008, 519–523; (g) Liu, Y.; Bao, W. Tetrahedron Lett. 2007, 48, 4785–
4788; (h) Chaturvedi, D.; Mishra, N.; Mishra, V. J. Sulfur Chem. 2007, 28, 39–44;
(i) Chaturvedi, D.; Ray, S. Monatsh. Chem. 2006, 137, 311–317.
26. General procedure for the synthesis of [E]- and [Z]-allyl dithiocarbamates (3) and
(4): A mixture of BH acetate 1 (1 mmol), carbon disulfide (1.2 mmol), and
amine 2 (1 mmol) was vigorously stirred in 1.5 mL of water at rt for 6–10 h
(Table 1). After completion of the reaction (monitored by TLC), the product
was extracted with ether/ethyl acetate (3 ꢀ 10 mL). The combined organic
phase was dried over Na2SO4, filtered, concentrated under reduced pressure,
and purified by silica gel column chromatography (hexane/ethyl acetate 9:1)
to afford the desired products (3) and (4). Physical data for representative
compounds. Compound 3a: Colorless viscous liquid, yield 84%. IR (neat) mmax
2941, 2925, 2854, 2218, 1608, 1480, 1429, 1232, 1210, 1120, 1015, 820, 760,
710 cmꢁ1 1H NMR (400 MHz; CDCl3/TMS) d: 1.71 (br, 6H, piperidine ring),
.
3.76 (s, 2H, CH2S), 3.90 (br, 2H, NCH2), 4.27 (br, 2H, NCH2), 6.91 (s, 1H, PhCH),
7.49–7.68 (m, 5Harom). 13C NMR (100 MHz; CDCl3/TMS) d: 24.7, 25.9, 42.6,
51.8, 52.8, 108.7, 117.1, 128.1, 128.8, 129.5, 135.2, 144.8, 194.7. EIMS (m/z):
302 (M+). Anal. Calcd for C16H18N2S2: C, 63.54; H, 6.00; N, 9.26. Found: C,
63.81; H, 6.22; N, 9.13. Compound 4c: colorless viscous liquid, yield 88%. IR
(neat) mmax 2983, 2920, 2846, 1709, 1610, 1488, 1269, 1205, 1051, 832, 756,
714 cmꢁ1
.
1H NMR (400 MHz; CDCl3/TMS) d: 1.18–1.30 (m, 6H, 2 ꢀ CH3), 3.57
(q, 2H, J = 7.1 Hz, CH2), 3.71 (s, 3H, OMe), 3.89 (q, 2H, J = 7.1 Hz, CH2), 4.03 (s,
2H, CH2S), 7.35–7.48 (m, 5Harom), 7.90 (s, 1H, PhCH). 13C NMR (100 MHz;
CDCl3/TMS) d: 11.8, 13.3, 31.6, 47.3, 50.2, 52.9, 127.0, 128.7, 129.5, 130.2,
135.4, 141.6, 167.2, 191.9. EIMS (m/z): 323 (M+). Anal. Calcd for C16H21NO2S2:
C, 59.41; H, 6.54; N, 4.33. Found: C, 59.78; H, 6.38; N, 4.61. Compound 4e:
colorless viscous liquid, yield 90%. IR (neat)
m
max 3282, 3008, 1711, 1610, 1508,
1482, 1254, 1203. 1091, 1058, 814, 762, 698 cmꢁ1
.
1H NMR (400 MHz; CDCl3/
TMS) d: 3.71 (s, 3H, OMe), 4.06 (s, 2H, CH2S), 4.88 (s, 2H, PhCH2), 7.19–7.31 (m,
4Harom), 7.42–7.53 (m, 6Harom), 7.91 (s, 1H, PhCH), 8.1 (br, NH, exchangeable
with D2O). 13C NMR (100 MHz; CDCl3/TMS) d: 31.4, 51.6, 53.0, 126,8, 127.6,
128.2, 128.8, 129.3, 129.9, 130.7, 135.4, 136.5, 141.4, 167.4, 196.0. EIMS (m/z):
357 (M+). Anal. Calcd for C19H19NO2S2: C, 63.83; H, 5.36; N, 3.92. Found: C,
63.60; H, 5.25; N, 3.55.
13. (a) Hayashi, T. Tetrahedron Lett. 1974, 15, 339–342; (b) Nakai, T.; Shiono, H.;
Okawara, M. Tetrahedron Lett. 1974, 15, 3625–3628; (c) Nakai, T.; Shiono, H.;
Okawara, M. Chem. Lett. 1975, 4, 249–252; (d) Hayashi, T. Tetrahedron Lett.
27. (a) Basavaiah, D.; Sarma, P. K. S.; Bhavani, A. K. D. J. Chem. Soc., Chem. Commun.
1994, 1091–1092; (b) Minami, I.; Yuhara, M.; Shimizu, I.; Tsuji, J. J. Chem. Soc.,
Chem. Commun. 1986, 118–119.