Cyanide-Bridged FeIII-MnIII Bimetallic Complexes
of capped molecular precursors [Fe(L)(CN)x]y- (L ) block-
ing ligands, x ) 2-5) with magnetic anisotropy rather than
using the nonblocked cyanide precursors. The molecule-level
magnets, however, require magnetic anisotropic spin centers
incorporated into molecular units at least, as well as
negligible intermolecular interaction between molecules or
chains with respect to intramolecular interaction. When the
intermolecular interaction becomes significant, the intrinsic
magnetic characters of SMMs and SCMs smear out. For
instance, the presence of sizable intermolecular contacts
(hydrogen bonding, π-π interactions, and so on) allowed
for magnetic systems with field-induced metamagnetic
transition or long-range magnetic ordering.9 Some low-
dimensional assemblies (clusters and chains) showed three-
dimensional (3D) magnetic arrangements and revealed a
degree of magnetic glassy state at the same time.10
Among the precursors [Fe(L)(CN)x]y-, molecular building
bricks with L ) tridentate ligand and x ) 3 can have facial
and meridional configurations relying on the relative disposi-
tion of the three cyanide groups around the FeIII center. Facial
FeIII tricyanide precursors with blocking groups, hydrot-
ris(pyrazolyl)borate (Tp), hydrotris(3,5-dimethylpyrazol-1-
yl)borate (Tp*), tetra(pyrazol-1-yl)borate (pzTp), and 1,3,5-
triaminocyclohexane (tach), were frequently utilized to
generate a number of magnetic systems with molecular and
1D chain structures.11 On the contrary, magnetic entities
fabricated by mer-[FeIII(L)(CN)3]- are still limited; they
contain chelating ligands, bis(2-pyridylcarbonyl)amidate
anion (bpca),12 8-(pyridine-2-carboxamido)quinoline anion
(pcq),13 8-(pyrazine-2-carboxamido)quinoline anion (pzcq),14
and 8-(5-methylpyrazine-2-carboxamido)quinoline anion
(mpzcq).15 However, to date, only a few Mn(II)-Fe(III) and
Mn(III)-Fe(III) bimetallic complexes based on mer-FeIII
cyanides were characterized structurally and magnetically.12-15
Herein, we report the syntheses, structures, and magnetic
properties of a dimer, [Fe(qcq)(CN)3][Mn(3-MeOsalen)-
(H2O)] ·2H2O [2·2H2O; 3-MeOsalen ) N,N′-ethylenebis(3-
methoxysalicylideneiminato) dianion], and three one-dimen-
sional (1D) zigzag chains, [Fe(qcq)(CN)3][Mn(5-Clsalen)]·
3H2O [3 · 2MeOH; 5-Clsalen ) N,N′-ethylenebis(5-chlo-
rosalicylideneiminato) dianion], [Fe(qcq)(CN)3][Mn(5-Br-
salen)]·2MeOH [4·2MeOH; 5-Brsalen ) N,N′-ethylenebis-
(5-bromosalicylideneiminato) dianion], and Fe(qcq)(CN)3]-
[Mn(salen)] · MeCN · H2O [5 · MeCN; salen ) N,N′-ethyl-
enebis(salicylideneiminato) dianion], using a newly designed
molecular precursor (PPh4)[Fe(qcq)(CN)3] [1; qcq ) 8-(2-
quinolinecarboxamido)quinoline anion]. Their crystal packing
diagrams are composed of extensive noncovalent forces such
as hydrogen bonding and π-π contacts, thus affording
higher-dimensional structures. Magnetic data show that
antiferromagnetic interactions are present between magnetic
centers through cyanide bridges in 2-5, which are in contrast
with most cyanide-linked FeIII-MnIII bimetallic systems.
(5) (a) Bennett, M. V.; Long, J. R. J. Am. Chem. Soc. 2003, 125, 2394.
(b) Pradhan, R.; Desplanches, C.; Guionneau, P.; Sutter, J.-P. Inorg.
Chem. 2003, 42, 6607. (c) Shores, M. P.; Sokol, J. J.; Long, J. R.
J. Am. Chem. Soc. 2002, 124, 2279. (d) Ruiz, E.; Rodr´ıguez-Fortea,
A.; Alvarez, S.; Verdaguer, M. Chem.sEur. J. 2005, 11, 2135. (e)
Visinescu, D.; Desplanches, C.; Imaz, I.; Bahers, V.; Pradhan, R.;
Villamena, F. A.; Guionneau, P.; Sutter, J.-P. J. Am.Chem. Soc. 2006,
128, 10202. (f) Lim, J. H.; You, Y. S.; Yoo, H. S.; Yoon, J. H.; Kim,
J. I.; Koh, E. K.; Hong, C. S. Inorg. Chem. 2007, 46, 10578. (g) Lim,
J. H.; Kang, J. S.; Kim, H. C.; Koh, E. K.; Hong, C. S. Inorg. Chem.
2006, 45, 7821. (h) You, Y. S.; Yoon, J. H.; Lim, J. H.; Kim, H. C.;
Hong, C. S. Inorg. Chem. 2005, 44, 7063. (i) You, Y. S.; Kim, D.;
Do, Y.; Oh, S. J.; Hong, C. S. Inorg. Chem. 2004, 43, 6899.
(6) (a) Zhong, Z. J.; Seino, H.; Mizobe, Y.; Hidai, M.; Fujishima, A.;
Ohkoshi, S.-i.; Hashimoto, K. J. Am. Chem. Soc. 2000, 122, 2952.
(b) Song, Y.; Zhang, P.; Ren, X.-M.; Shen, X.-F.; Li, Y.-Z.; You,
X.-Z. J. Am. Chem. Soc. 2005, 127, 3708. (c) Lim, J. H.; Yoon, J. H.;
Kim, H. C.; Hong, C. S. Angew. Chem., Int. Ed. 2006, 45, 7424. (d)
Freedman, D. E.; Bennett, M. V.; Long, J. R. Dalton Trans. 2006,
2829. (e) Bonadio, F.; Gross, M.; Stoeckli-Evans, H.; Decurtins, S.
Inorg. Chem. 2002, 41, 5891.
Experimental Section
Reagents. Mn Schiff bases were synthesized according to a
modified literature procedure.16 All chemicals and solvents in the
synthesis were of reagent grade and used as received. All manipula-
tions were performed under aerobic conditions.
(7) Gatteschi, D.; Sessoli, R. Angew. Chem., Int. Ed. 2003, 42, 268.
(8) (a) Lescoue¨zec, R.; Toma, L. M.; Vaissermann, J.; Verdaguer, M.;
Delgado, F. S.; Ruiz-Pe´rez, C.; Lloret, F.; Julve, M. Coord. Chem.
ReV. 2005, 249, 2691. (b) Clerac, R.; Miyasaka, H.; Yamashita, M.;
Coulon, C. J. Am. Chem. Soc. 2002, 124, 12837. (c) Coulon, C.;
Miyasaka, H.; Cle´rac, R. Struct. Bonding (Berlin) 2006, 122, 163.
(9) (a) Yoon, J. H.; Lim, J. H.; Choi, S. W.; Kim, H. C.; Hong, C. S.
Inorg. Chem. 2007, 46, 1529. (b) Wang, S.; Ferbinteanu, M.;
Yamashita, M. Inorg. Chem. 2007, 46, 610. (c) Ni, W.-W.; Ni, Z.-H.;
Cui, A.-L.; Liang, X.; Kou, H.-Z. Inorg. Chem. 2007, 46, 22. (d)
Matsumoto, N.; Sunatsuki, Y.; Miyasaka, H.; Hashimoto, Y.; Luneau,
D.; Tuchagues, J.-P. Angew. Chem., Int. Ed. 1999, 38, 171.
(10) (a) Wang, Z.-X.; Li, X.-L.; Wang, T.-W.; Li, Y.-Z.; Ohkoshi, S.-i.;
Hashimoto, K.; Song, Y.; You, X.-Z. Inorg. Chem. 2007, 46, 10990.
(b) Liu, W.; Wang, C.-F.; Li, Y.-Z.; Zuo, J.-L.; You, X.-Z. Inorg.
Chem. 2006, 45, 10058. (c) Liu, X.-T.; Wang, X.-Y.; Zhang, W.-X.;
Cui, P.; Gao, S. AdV. Mater. 2006, 18, 2852. (d) Kim, J.; Han, S.;
Pokhodnya, K. I.; Migliori, J. M.; Miller, J. S. Inorg. Chem. 2005,
44, 6983. (e) Li, D.-F.; Zheng, L.-M.; Zhang, T.-Z.; Huang, J.; Gao,
S.; Tang, W.-X. Inorg. Chem. 2003, 42, 6123. (f) Boskovic, C.;
Bircher, R.; Tregenna-Piggott, P. L. W.; Gudel, H. U.; Paulsen, C.;
Wernsdorfer, W.; Barra, A.-L.; Khatsko, E.; Neels, A.; Stoeckli-Evans,
H. J. Am. Chem. Soc. 2003, 125, 14046.
(11) (a) Liu, W.; Wang, C.-F.; Li, Y.-Z.; Zuo, J.-L.; You, X.-Z. Inorg.
Chem. 2006, 45, 10058. (b) Wen, H.-R.; Wang, C.-F.; Song, Y.; Gao,
S.; Zuo, J.-L.; You, X.-Z. Inorg. Chem. 2006, 45, 8942. (c) Gu, Z.-
G.; Yang, Q.-F.; Liu, W.; Song, Y.; Li, T.-Z.; Zuo, J.-L.; You, X.-Z.
Inorg. Chem. 2006, 45, 8895. (d) Wang, S.; Zuo, J.-L.; Zhou, H.-C.;
Choi, H. J.; Ke, Y.; Long, J. R.; You, X.-Z. Angew. Chem., Int. Ed.
2004, 43, 5940. (e) Li, D.; Parkin, S.; Wang, G.; Yee, G. T.; Prosvirin,
A. V.; Holmes, S. M. Inorg. Chem. 2005, 44, 4903. (f) Li, D.; Parkin,
S.; Wang, G.; Yee, G. T.; Cle´rac, R.; Wernsdorfer, W.; Holmes, S. M.
J. Am. Chem. Soc. 2006, 128, 4214. (g) Yang, J. Y.; Shores, M. P.;
Sokol, J. J.; Long, J. R. Inorg. Chem. 2003, 42, 1403. (h) Wang, S.;
Zuo, J.-L.; Gao, S.; Song, Y.; Zhuo, H.-C.; Zhang, Y.-Z.; You, X.-Z.
J. Am. Chem. Soc. 2004, 126, 8900.
(12) Lescoue¨zec, R.; Vaissermann, J.; Toma, M.; Carrasco, R.; Lloret, F.;
Julve, M. Inorg. Chem. 2004, 43, 2234.
(13) Ni, Z.-H.; Kou, H.-Z.; Zhang, L.-F.; Ni, W.-W.; Jiang, Y.-B.; Cui,
A.-L.; Ribas, J.; Sato, O. Inorg. Chem. 2005, 44, 9631.
(14) Kim, J. I.; Yoo, H. S.; Koh, E. K.; Kim, H. C.; Hong, C. S. Inorg.
Chem. 2007, 46, 8481.
(15) Kim, J. I.; Yoo, H. S.; Koh, E. K.; Hong, C. S. Inorg. Chem. 2007,
46, 10461.
(16) Karmakar, R.; Choudhury, C. R.; Bravic, G.; Sutter, J.-P.; Mitra, S.
Polyhedron 2004, 23, 949.
Inorganic Chemistry, Vol. 48, No. 7, 2009 2957