Organic Letters
Letter
Scheme 4. Chemoselectivity Study
ACKNOWLEDGMENTS
■
The authors acknowledge the Canada Research Chair
Foundation (to C.-J. Li), the CFI, FRQNT Center for Green
Chemistry and Catalysis, NSERC, and McGill University for
support of our research. J.G. thanks China Scholarship Council
for a visiting scholarship. The authors thank Z. Hearne for
proofreading.
REFERENCES
(1) Shirley, D. A. Org. React. 1954, 8, 28.
(2) (a) Kishner, N. J. Russ. Phys. Chem. Soc. 1911, 43, 582. (b) Wolff,
L. Justus Liebigs Annal. Chem. 1912, 394, 86.
■
(3) (a) Baldwin, J. E.; Bottaro, J. C.; Kolhe, J. N.; Adlington, R. M. J.
Chem. Soc., Chem. Commun. 1984, 22. (b) Baldwin, J. E.; Adlington,
R. M.; Bottaro, J. C.; Kolhe, J. N.; Newington, I. M.; Perry, M. W.
Tetrahedron 1986, 42, 4235.
(4) Little, R. D.; Masjedizadeh, M. R.; Wallquist, O.; McLoughlin, J.
I. Org. React. 1995, 47, 315.
(5) Wang, H.; Dai, X.-J.; Li, C.-J. Nat. Chem. 2017, 9, 374.
(6) Chen, N.; Dai, X.-J.; Wang, H.; Li, C.-J. Angew. Chem., Int. Ed.
2017, 56, 6260.
(7) Dai, X.-J.; Wang, H.; Li, C.-J. Angew. Chem., Int. Ed. 2017, 56,
6302.
(8) (a) Yan, S.-S.; Zhu, L.; Ye, J.-H.; Zhang, Z.; Huang, H.; Zeng,
H.; Li, C.-J.; Lan, Y.; Yu, D.-G. Chem. Sci. 2018, 9, 4873. For
olefination reaction, see: (b) Wei, W.; Dai, X.-J.; Wang, H.; Li, C.;
Yang, X.; Li, C.-J. Chem. Sci. 2017, 8, 8193. For cross-coupling, see:
(c) Tang, J.; Lv, L.; Dai, X.-J.; Li, C.-C.; Li, L.; Li, C.-J. Chem.
Commun. 2018, 54, 1750. (d) Lv, L.; Zhu, D.; Tang, J.; Qiu, Z.; Li, C.-
C.; Gao, J.; Li, C.-J. ACS Catal. 2018, 8, 4622.
Replacing acetone with a long-chain aliphatic ketone increased
the product ratio in favor of the acetophenone addition
product (eq 2). The reactivity of benzophenone is also much
lower than acetophenone probably due to its high steric effect
(eq 3). Based on these analysis, we concluded that
acetophenone derivatives are more reactive for this trans-
formation than other kinds of ketone substrates.
In conclusion, we have successfully established the use of
earth-abundant and well-defined iron complexes to catalyze the
nucleophilic additions of hydrazones to a broad scope of
carbonyl compounds, imines, and Michael acceptors at room
temperature. The study not only marks the first abundant-
metal-catalyzed nucleophilic reaction of an organic carbanion
equivalent via hydrazones but also opens up a potentially new
avenue in homogeneous iron catalysis. In addition, unlike
classical Grignard-type reactions, chemoselectivity of various
kinds of carbonyl groups can be realized by this reaction. The
mechanism,16 asymmetric studies, and synthetic applications of
this reaction and this catalytic system are under further
investigation.
́
̈
rstner, A.; Leitner, A.; Mendez, M.; Krause, H. J. Am.
(9) (a) Fu
Chem. Soc. 2002, 124, 13856. (b) Nakamura, M.; Matsuo, K.; Ito, S.;
Nakamura, E. J. Am. Chem. Soc. 2004, 126, 3686. (c) Furstner, A.;
̈
Martin, R. Chem. Lett. 2005, 34, 624. (d) Sapountzis, I.; Lin, W.;
Kofink, C. C.; Despotopoulou, C.; Knochel, P. Angew. Chem., Int. Ed.
́
2005, 44, 1654. (e) Guerinot, A.; Reymond, S.; Cossy, J. Angew.
Chem., Int. Ed. 2007, 46, 6521. (f) Hatakeyama, T.; Nakamura, M. J.
Am. Chem. Soc. 2007, 129, 9844. (g) Fu
H.; Seidel, G.; Goddard, R.; Lehmann, C. W. J. Am. Chem. Soc. 2008,
130, 8773. (h) Sherry, B. D.; Furstner, A. Acc. Chem. Res. 2008, 41,
̈
rstner, A.; Martin, R.; Krause,
̈
1500. (i) Sun, C.-L.; Li, B.-J.; Shi, Z.-J. Chem. Rev. 2011, 111, 1293.
(j) Zhao, D.; Shi, Z.; Glorius, F. Angew. Chem., Int. Ed. 2013, 52,
12426. (k) Shang, R.; Ilies, L.; Asako, S.; Nakamura, E. J. Am. Chem.
Soc. 2014, 136, 14349. (l) Zhong, Y.; Han, W. Chem. Commun. 2014,
ASSOCIATED CONTENT
* Supporting Information
■
̈
50, 3874. (m) Bauer, I.; Knolker, H.-J. Chem. Rev. 2015, 115, 3170.
S
(n) Ludwig, J. R.; Zimmerman, P. M.; Gianino, J. B.; Schindler, C. S.
́
Nature 2016, 533, 374. (o) Saa, C. Angew. Chem., Int. Ed. 2016, 55,
10960.
The Supporting Information is available free of charge on the
(10) Chatt, J.; Hayter, R. G. J. Chem. Soc. 1961, 5507.
(11) (a) Pasternack, R. F.; Huber, P. R.; Boyd, P.; Engasser, G.;
Francesconi, L.; Gibbs, E.; Fasella, P.; Cerio Venturo, G.; Hinds, L. d.
J. Am. Chem. Soc. 1972, 94, 4511. (b) Whittlesey, M. K.; Mawby, R. J.;
Osman, R.; Perutz, R. N.; Field, L. D.; Wilkinson, M. P.; George, M.
W. J. Am. Chem. Soc. 1993, 115, 8627. (c) Miller, W. K.; Gilbertson, J.
D.; Leiva-Paredes, C.; Bernatis, P. R.; Weakley, T. J. R.; Lyon, D. K.;
Tyler, D. R. Inorg. Chem. 2002, 41, 5453. (d) Hazari, N. Chem. Soc.
Rev. 2010, 39, 4044. (e) Casitas, A.; Krause, H.; Goddard, R.;
General experimental information, experimental proce-
dures, additional control experiments to understand the
mechanism, a plausible mechanism for the iron-catalyzed
nucleophilic reaction of hydrazones, reaction of 1a with
2a at 1 mmol scale, spectroscopic data of products,
reference, and NMR spectra of products (PDF)
Furstner, A. Angew. Chem., Int. Ed. 2015, 54, 1521. (f) Field, L. D.;
̈
AUTHOR INFORMATION
■
Guest, R. W.; Vuong, K. Q.; Dalgarno, S. J.; Jensen, P. Inorg. Chem.
2009, 48, 2246. (g) Field, L. D.; Li, H. L.; Dalgarno, S. J.; McIntosh,
R. D. Inorg. Chem. 2012, 51, 3733.
Corresponding Author
ORCID
(12) (a) Koerner von Gustorf, E. A.; Grevels, F.-W.; Fischler, I. The
Organic Chemistry of Iron; Academic Press: New York, 1978.
(b) Silver, J. Chemistry of Iron; Blackie Academic & Professional:
London, NY, 1993. (c) Symons, M. C. R.; Gutteridge, J. M. C. Free
Radicals and Iron: Chemistry, Biology, and Medicine; Oxford University
Press: Oxford, NY, 1998. (d) Miessler, G. L.; Tarr, D. A. Inorganic
Chemistry; Pearson Education: Upper Saddle River, N.J., 2004.
Notes
The authors declare no competing financial interest.
D
Org. Lett. XXXX, XXX, XXX−XXX