796
W. Shen et al. / Bioorg. Med. Chem. Lett. 19 (2009) 792–796
Table 4
Acknowledgement
Summary of permeability data for vidarabine and selected prodrugs
Compounds
Caco-2 permeability cm/s ꢁ 106
0.083
0.601
1.026
0.668
Fold increase
This work was supported by a SBIR Grant 1R43AI071400 from
the National Institutes of Health.
Vidarabine (1)
—
7.2
12.4
8.05
D-val (7a)
L
-ile (7k)
-phe (7l)
Supplementary data
L
Supplementary data associated with this article can be found, in
uble in water and have greatly improved solubility at physiological
pH, with solubilities >10 mg/ml. Based upon our previous findings
with amino acid nucleoside prodrugs,29 it was anticipated that the
amino acid prodrugs of vidarabine would be substrates for the
dipeptide intestinal transporter, PEPT1. To test this, the uptake of
References and notes
1. Kukhanova, M.; Krayevsky, A.; Prusoff, W.; Cheng, Y.-C. Curr. Pharm. Des. 2000,
6, 585.
2. Adenine Arabinoside: An Antiviral Agent; Pavan-Langston, D., Buchanan, R. A.,
Alford, C. A., Eds.; Raven Press: New York, 1975.
L-valy and L-isoleucyl prodrugs of vidarabine into a HeLa cell line
that overexpresses the human PEPT1 transporter was compared
to the uptake of valacyclovir, a known substrate of the PEPT1 trans-
porter.30–35 As seen in Table 2, both the prodrugs showed approx-
imately 20-fold greater uptake over control cells not expressing
PEPT1, an increase which was comparable to that seen with vala-
cyclovir. Stability of the promoiety (hydrolysis of prodrug to the
parent vidarabine or vidarabine monophosphate) for selected pro-
drugs was assessed in intestinal and liver homogenates from the
rat. As seen in Table 3, the prodrugs showed varying levels of sta-
bility to hydrolysis based on the structure of the promoiety. In
intestinal homogenates, the phosphoramidate prodrugs (10a and
3. White, O. D.; Fenner, F. J. Medical Virology, 3rd ed.; Academic Press: San Diego,
1994. p267.
4. Field, H. J.; De Clercq, E. Microbiol. Today 2004, 31, 58.
5. Miller, F. A.; Dixon, G. J.; Ehrlich, J.; Sloan, B. J.; McLean, I. W., Jr. Antimicrob.
Agents Chemother. 1968, 8, 136.
6. Sloan, B. J. In Adenine Arabinoside: An Antiviral Agent; Pavan-Langston, D.,
Buchanan, R. A., Alford, C. A., Eds.; Raven Press: New York, 1975; p 45.
7. Hubert-Habart, M.; Cohen, S. S. Biochim. Biophys. Acta 1962, 59, 468.
8. Shipman, C., Jr.; Smith, S. H.; Carlson, R. H.; Drach, J. C. Antimicrob. Agents
Chemother. 1976, 9, 120.
9. Smee, D. F.; Sidwell, R. W. Nucleosides Nucleotides Nucleic Acids 2004, 23, 375.
10. Hilfinger, J. M.; Wu, Z.; Kim, J.; Mitchell, S.; Breitenbach, J.; Amidon, G.; Drach, J.
Antiviral. Res. 2006, 70, A14.
11. Lea, A. P.; Bryson, H. M. Drugs 1996, 52, 225.
12. Hitchcock, M. J. M.; Jaffe, H. S.; Martin, J. C.; Stagg, R. J. Antiviral. Chem.
Chemother. 1996, 7, 115.
13. Safrin, S.; Cherrington, J.; Jaffe, H. S. Rev. Med. Virol. 1997, 7, 145.
14. Wachsman, M.; Petty, B. G.; Cundy, K. C.; Jaffe, H. S.; Fisher, P. E.; Pastelak, A.;
Lietman, P. S. Antiviral. Res. 1996, 29, 153.
b) were the most stable followed by the
then the -amino acid prodrugs. Hydrolysis to parent was more ra-
pid in the liver homogenates for all prodrugs, except the -valyly
D-amino acid prodrugs
L
D
phosphoramidate vidarabine, which was stable in both homoge-
nates. However, in general, the phosphoramidate prodrugs were
less stable than their amino acid counterparts in plasma. Stability
to ADA, which is the major metabolic enzyme for vidarabine and
which converts it to ara-H was also examined. While vidarabine
was rapidly hydrolyzed with a commensurate rise in the concen-
tration of the deaminated product, ara-H (Fig. 1 top), it was found
that substitution at the 50-OH group made the drug resistant to
deamination by ADA (Fig. 1 bottom),36,37 consistent with past re-
ports on 50-OH prodrugs of vidarabine.8,26
15. Cundy, K. C. Clin. Pharmacokinet. 1999, 36, 127.
16. Cundy, K. C.; Bidgood, A. M.; Lynch, G.; Shaw, J. P.; Griffin, L.; Lee, W. A. Drug
Metab. Dispos. 1996, 24, 745.
17. Wan, W. B.; Beadle, J. R.; Hartline, C.; Kern, E. R.; Ciesla, S. L.; Valiaeva, N.;
Hostetler, K. Y. Antimicrob. Agents Chemother. 2005, 49, 656.
18. Hassner, A.; Strand, G.; Rubinstein, M.; Patchornik, A. J. Am. Chem. Soc. 1975, 97,
1614.
19. van Boom, J. H.; Burgers, P. M. J. Tetrahedron Lett. 1976, 52, 4875.
20. Jeker, N.; Tamm, C. Helv. Chim. Acta 1988, 71, 1895.
21. Jeker, N.; Tamm, C. Helv. Chim. Acta 1988, 71, 1904.
22. Rej, R. N.; Glushka, J. N.; Chew, W.; Perlin, A. S. Carbohydr. Res. 1989, 189, 135.
23. Glushka, J. N.; Perlin, A. S. Carbohydr. Res. 1990, 205, 305.
24. Baker, D. C.; Haskell, T. H.; Putt, S. R.; Sloan, B. J. J. Med. Chem. 1979, 22, 273.
25. McGuigan, C.; Thiery, J.; Daverio, F.; Jiang, W. G.; Davies, G.; Masonb, M. Bioorg.
Med. Chem. 2005, 13, 3219.
The transepithelial transport of some of the prodrugs through
Caco-2 monolayers was evaluated as previously described.38 In
these experiments, transport studies were performed 21 days
post-seeding. The assay was initiated by adding drug transport
26. Schwartz, P. M.; Shipman, C., Jr.; Smith, S. H.; Sandberg, J. N.; Drach, J. C.
Antimicrob. Agents Chemother. 1976, 10, 64.
27. Stolk, L. M. L.; Huisman, W.; Nordemann, H. D.; Vyth, A. Pharmaceutisch
Weekblad, Sci. Ed. 1983, 5, 57.
solution (1.2 mg drug in MES buffer, pH 6.0, containing 5 mM D-glu-
28. Baker, D. C.; Haskell, T. H.; Putt, S. R. J. Med. Chem. 1978, 21, 1218.
29. Vig, B. S.; Lorenzi, P. J.; Mittal, S.; Landowski, C. P.; Shin, H.-C.; Mosberg, H. I.;
Hilfinger, J. M.; Amidon, G. L. Pharm. Res. 2003, 20, 1381.
30. Song, X.; Lorenzi, P. L.; Landowski, C. P.; Vig, B. S.; Hilfinger, J. M.; Amidon, G. L.
Mol. Pharm. 2005, 2, 157.
31. Lorenzi, P. L.; Landowski, C. P.; Song, X.; Borysko, K. Z.; Breitenbach, J. M.; Kim,
J. S.; Hilfinger, J. M.; Townsend, L. B.; Drach, J. C.; Amidon, G. L. J. Pharmacol. Exp.
Ther. 2005, 314, 883.
cose, 5 mM MES, 1 mM CaCl2, 1 mM MgCl2, 150 mM NaCl, 3 mM
KCl, 1 mM NaH2PO4) to the apical chamber of the Caco-2 insert.
Two hundred microliter aliquots were withdrawn from the basolat-
eral chamber at predetermined intervals and replaced with fresh
HEPES, pH 7.4, buffer. The epithelial integrity of representative cell
monolayers was assessed by monitoring transepithelial resistance.
As seen in Table 4, the permeabilities of all tested prodrugs were en-
hanced by at least 7-fold comparing with the permeability of vidar-
abine. Considering that the prodrugs would be substrates for the
dipeptide intestinal transporter, PEPT1 (Table 2) and those trans-
porters are much more highly expressed in the small intestinal
membranes than in Caco-2 membranes, we anticipate significant
increases of vidarabine and/or its prodrug in in vivo studies.
These data support our hypothesis that substitution at the 50-
OH group can result in both enhanced uptake of vidarabine or its
prodrugs and protection from metabolism by ADA. The next phase
of the work will be to examine the in vivo oral bioavailability of the
prodrugs and parent compounds and ultimately their effectiveness
in animal models of pox viruses.
32. Landowski, C. P.; Song, X.; Lorenzi, P. L.; Hilfinger, J. M.; Amidon, G. L. Pharm.
Res. 2005, 22, 1510.
33. Han, H.-K.; De Vrueh, R. L. A.; Rhie, J. K.; Covitz, K.-M. Y.; Smith, P. L.; Lee, C.-P.;
Oh, D.-M.; Sadee, W.; Amidon, G. L. Pharm. Res. 1998, 15, 1154.
34. Landowski, C. P.; Sun, D.; Foster, D. R.; Menon, S. S.; Barnett, J. L.; Welage, L. S.;
Ramachandran, C.; Amidon, G. L. J. Pharmacol. Exp. Ther. 2003, 306, 778.
35. Song, X.; Vig, B. S.; Lorenzi, P. L.; Drach, J. C.; Townsend, L. B.; Amidon, G. L. J.
Med. Chem. 2005, 48, 1274.
36. Breitenbach, J. M.; Shen, W.; Hilfinger, J.; Drach, J. C. Antiviral. Res. 2008 78,
A54, A55 [21st International Conf. Antiviral Res., Montreal, Canada, April 15,
2008].
37. Gentry, B. G.; Shen, W.; Breitenbach, J. M.; Hilfinger, J.; Drach, J. C. Antiviral. Res.
2008 78, A56 [21st International Conf. Antiviral Res., Montreal, Canada, April
15, 2008].
38. Han, H.; de Vrueh, R. L.; Rhie, J. K.; Covitz, K. M.; Smith, P. L.; Lee, C. P.; Oh, D.
M.; Sadee, W.; Amidon, G. L. Pharm. Res. 1998, 15, 1154.