Journal of the American Chemical Society
Page 4 of 5
(c) Ohmatsu, K.; Imagawa, N.; Ooi, T. Nat. Chem. 2014, 6, 47. (d) Xu,
C.-F.; Zheng, B.-H.; Suo, J.-J.; Ding, C.-H.; Hou, X.-L. Angew. Chem.
Int. Ed. 2015, 54, 1604.
The absolute configuration of the indoline products was
unambiguously determined to be (S,S) on the basis of the X-
ray crystallographic analysis of 3af (Figure S2).13 The stere-
ocontrol that led to this isomer might be rationalized with
Maarseveen's model of cooperative catalysis (Figure 2b),14
which was established according to crystallographic results
(Figure 2a).14b,15 The propargylation step possibly favors the
re-face attack of the copper-allenylidene complex by sulfur
ylides, where the sulfur ylide reacts with its re-face.
1
2
3
4
5
6
7
8
(3) For select examples, see: (a) Guzmn, P. E.; Lian, Y.; Davies, H.
M. L. Angew. Chem. Int. Ed. 2014, 53, 13083. (b) Cheng, Q.-Q.;
Yedoyan, J.; Arman, H.; Doyle, M. P. J. Am. Chem. Soc. 2016, 138, 44,
and references therein.
(4) For reviews, see: (a) Ljungdahl, N.; Kann, N. Angew. Chem. Int.
Ed. 2009, 48, 642. (b) Detz, R. J.; Hiemstra, H.; van Maarseveen, J. H.
Eur. J. Org. Chem. 2009, 2009, 6263. (c) Miyake, Y.; Uemura, S.;
Nishibayashi, Y. ChemCatChem 2009, 1, 342. (d) Ding, C.-H.; Hou,
X.-L. Chem. Rev. 2011, 111, 1914. (e) Nishibayashi, Y. Synthesis 2012, 44,
489. (f) Bauer, E. Synthesis 2012, 44, 1131. (g) Hu, X.-H.; Liu, Z.-T.;
Shao, H.; Hu, X.-P.; Synthesis 2015, 47, 913. (h) Zhang, D.-Y.; Hu, X.-P.
Tetrahedron Lett. 2015, 56, 283.
(5) For selected examples of Ru catalysis, see: (a) Inada, Y.; Nishi-
bayashi, Y.; Uemura, S. Angew. Chem. Int. Ed. 2005, 44, 7715. (b)
Ikeda, M.; Miyake, Y.; Nishibayashi, Y. Angew. Chem. Int. Ed. 2010,
49, 7289. (c) Senda, Y.; Nakajima, K.; Nishibayashi, Y. Angew. Chem.
Int. Ed. 2015, 54, 4060.
9
a)
b)
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
O
O
N
Cu
N
N
R
Cu
R
Cu
(X-)2
R
R
Cu
N
N
N
O
O
Ph
H
Re-favored
O
Me
Two Copper:
Cooperative
Catalysis
S
results of Gamasa and
Nishibayashi
(X = OTf or PF6)
Ph
NH
Ts
Maarseveen' model
(6) For selected examples of Cu catalysis, see: (a) Detz, R. J.; Del-
ville, M. M. E.; Hiemstra, H.; van Maarseveen, J. H. Angew. Chem. Int.
Ed. 2008, 47, 3777. (b) Hattori, G.; Matsuzawa, H.; Miyake, Y.; Nishi-
bayashi, Y. Angew. Chem. Int. Ed. 2008, 47, 3781. (c) Fang, P.; Hou,
X.-L. Org. Lett. 2009, 11, 4612. (d) Yoshida, A.; Ikeda, M.; Hattori, G.;
Miyake, Y.; Nishibayashi. Y. Org. Lett. 2011, 13, 292. (e) Zhang, C.; Hu,
X.-H.; Wang, Y.-H.; Zheng, Z.; Xu, J.; Hu, X.-P. J. Am. Chem. Soc. 2012,
134, 9585. (f) Zhu, F.-L.; Zou, Y.; Zhang, D.-Y.; Wang, Y.-H.; Hu, X.-H.;
Chen, S.; Xu, J.; Hu, X.-P. Angew. Chem. Int. Ed. 2014, 53, 1410. (g)
Zhu, F.-L.; Wang, Y.-H.; Zhang, D.-Y.; Xu, J.; Hu, X.-P. Angew. Chem.
Int. Ed. 2014, 53, 10223. (h) Shao, W.; Li, H.; Liu, C.; Liu, C. J.; You, S.
L. Angew. Chem. Int. Ed. 2015, 54, 7684.
Figure 2. Possible asymmetric induction mode.
In conclusion, we developed a copper-catalyzed asym-
metric formal [4+1] cycloaddition for the first time through
trapping copper-allenylidene dipolar intermediates by sulfur
ylides. Thus, a new approach to chiral indoline products and
related cycloadducts was explored in high reaction yields and
stereoselectivities (up to 99% yield, 98% ee and >95:5 dr).
Mechanistic studies suggest that this reaction is a sequence
process that involves decarboxylative propargylation/SN2
reactions promoted by dinuclear copper complexes. Further
studies with this type of metal-associated dipolar intermedi-
ates are currently in progress.
(7) Miyake, Y.; Endo, S.; Moriyama, T.; Sakata, K.; Nishibayashi, Y.
Angew. Chem. Int. Ed. 2013, 52, 1758.
(8) For select reviews, see: (a) McGarrigle, E. M.; Myers, E. L.; Illa,
O.; Shaw, M. A.; Riches, S. L.; Aggarwal, V. K. Chem. Rev. 2007, 107,
5841. (b) Sun, X.-L.; Tang, Y. Acc. Chem. Res. 2008, 41, 937. (c) Li, G.-
C.; Wang, L.-Y.; Huang, Y. Chin. J. Org. Chem. 2013, 33, 1900.
(9) For recent work on sulfur ylides from our group, see: (a) Lu,
L.-Q.; Chen, J.-R.; Xiao, W.-J. Acc. Chem. Res. 2012, 45, 1278. (b) Yang,
Q.-Q.; Xiao, C.; Lu, L.-Q.; An, J.; Tan, F.; Li, B.-J.; Xiao, W.-J. Angew.
Chem. Int. Ed. 2012, 51, 9137. (c) Li, T.-R.; Tan, F.; Lu, L.-Q.; Wei, Y.;
Wang, Y.-N.; Liu, Y.-Y.; Yang, Q.-Q.; Chen, J.-R.; Shi, D.-Q.; Xiao,
W.-J. Nat. Commun. 2014, 5. 5500. (d) Wang, Q.; Qi, X.; Lu, L.-Q.; Li,
T.-R.; Yuan, Z.-G.; Zhang, K.; Li, B.-J.; Lan, Y.; Xiao, W.-J. Angew.
Chem. Int. Ed. 2016, 55, 2840.
(10) For select examples on the biological significance and synthe-
sis of chiral indolines, see: (a) Cui, H.-L.; Feng, X.; Peng, J.; Lei, J.;
Jiang, K.; Chen, Y.-C. Angew. Chem., Int. Ed. 2011, 50, 10661. (b) Duan,
Y.; Li, L.; Chen, M.-W.; Yu, C.-B.; Fan, H.-J.; Zhou, Y.-G. J. Am. Chem.
Soc. 2014, 136, 7688. (c) Romano, C.; Jia, M.; Monari, M.; Manoni, E.;
Bandini, M. Angew. Chem. Int. Ed. 2014, 53, 13854.
(11) (a) Chen, J.-R.; Dong, W.-R.; Candy, M.; Pan, F.-F.; Jörres, M.;
Bolm, C. J. Am. Chem. Soc. 2012, 134, 6924. (b) Huang, X.; Klimczyk,
S.; Veiros, L. F.; Maulide, N. Chem. Sci. 2013, 4, 1105. (c) Klimczyk, S.;
Misale, A.; Huang, X.; Maulide, N. Angew. Chem. Int. Ed. 2015, 54,
10365, and ref. 9c.
(12) Phenyl-substituted sulfur ylide and Corey ylide were tested,
but only the fast decomposition of substrate 1a was observed.
(13) CCDC 1471938 and CCDC 1450138 contain the crystallographic
data of 10 and 3af. These data can be obtained free of charge from
ASSOCIATED CONTENT
Supporting Information
Experimental procedures; spectral data. This material is
available free of charge via the Internet at
AUTHOR INFORMATION
Corresponding Author
luliangqiu@mail.ccnu.edu.cn; wxiao@mail.ccnu.edu.cn
Notes
*The authors declare no competing financial interests.
ACKNOWLEDGMENT
We are grateful to the National Natural Science Foundation
of China (No. 21232003, 21472057 and 21572074) and other
financial supports (No. 201422, CCNU15A02007 and
2015CFA033) for support of this research.
REFERENCES
The
Cambridge
Crystallographic
Data
Centre
via
(1) Selected reviews, see: (a) Kobayashi, S.; Jorgensen, K. A. Cy-
cloaddition Reactions in Organic Synthesis; Wiley-VCH: Weinheim,
2001. (b) Weaver, J. D.; Recio III, A.; Grenning, A. J.; Tunge, J. A.
Chem. Rev. 2011, 111, 1846. (c) Xu, X.; Doyle, M. P. Acc. Chem. Res.
2014, 47, 1396. (d) Chen, J.-R.; Hu, X.-Q.; Xiao, W.-J. Angew. Chem.
Int. Ed. 2014, 53, 4038.
(2) For recent examples, see: (a) Trost, B. M.; Morris, P. J.; Sprague,
S. J. J. Am. Chem. Soc. 2012, 134, 17823. (b) Khan, A.; Zheng, R.; Kan,
Y.; Ye, J.; Xing, J.; Zhang, Y.-J. Angew. Chem. Int. Ed. 2014, 53, 6439.
(14) (a) Detz, R.J. Triazole-based P,N ligands : discovery of an enan-
tioselective copper catalyzed propargylic amination reaction, PhD
thesis, 2009. (b) Nakajima, K.; Shibata, M.; Nishibayashi, Y. J. Am.
Chem. Soc. 2015, 137, 2472.
(15) (a) Díez, J.; Gamasa, M. P.; Panera, M. Inorg. Chem. 2006, 45,
10043. (b) Panera, M.; Díez, J.; Merino, I.; Rubio, E.; Gamasa, M. P.
Inorg. Chem. 2009, 48, 11147.
ACS Paragon Plus Environment