starting materials in the readily available alcohol oxidation
state. To the best of our knowledge this transformation
represents the first intermolecular dehydrogenative coupling
of aromatic amines and alcohols.
Our previous work, utilizing nucleophilic N-heterocyclic
carbene (NHC) catalysts in tandem oxidation reactions,12 led
us to investigate the acylation potential of that process with
respect to amines.13 With indole as the nucleophile, we were
pleased to observe the formation of the N-acylated product
10a under reaction conditions employing various azolium
salts and oxidants (results not shown). The reaction was
found to also proceed in the absence of the nucleophilic
catalyst (Table 1, entry 1), presumably due to the formation
Table 1. N-Acylation of Indole with Hydrocinnamaldehyde
Figure 2. Dehydrogenative coupling of indoles and alcohols.
useful N-acylated indole structures. Furthermore, a strategy
that accesses higher oxidation states in a single operation
(i.e., alcohol to amide) simultaneously exploits the advan-
tages of tandem processes and facilitates the functionalization
of challenging substrates. Indoles and pyrroles were attractive
targets for this process due to the stability of the aminal
intermediate (A).9,10 Herein we report the dehydrogenative
coupling of indoles and alcohols, which does not require the
use of strong hydride or alkyllithium bases and also obviates
the need for sensitive or less accessible acid chloride or
anhydride acylating agents.11 In addition, this process utilizes
entry
oxidant
MnO2
additive
none
9a:8 solventa yield (%)b
1
2
3
4
5
6
7
10:1 toluenec
10:1 toluenec
12
16
PCC
none
TPAP/NMO 4 Å mol sieves 10:1 CH2Cl2
TPAP/NMO 4 Å mol sieves 10:1 CH3CN
TPAP/NMO 4 Å mol sieves
TPAP/NMO 4 Å mol sieves
TPAP/NMO 4 Å mol sieves
4
15
5:1 CH3CN
1:1 CH3CN
1:1 CH3CNd
36
18
81 (74)
a At 25 °C with 8 at 0.33 M. b Yields calculated by GC (isolated yield
(4) For examples of carboxylic acids protected as indolylamides, see:
(a) Reference 9a. (b) De Oliveira Baptista, M. J. V.; Barrett, A. G. M.;
Barton, D. H. R.; Girijavallabhan, M.; Jennings, R. C.; Kelly, J.; Papadimi-
triou, V. J.; Turner, J. V.; Usher, N. A. J. Chem. Soc., Perkin Trans. 1
1977, 1477–1500. (c) Barrett, A. G. M.; Dhanak, D. Tetrahedron Lett. 1987,
28, 3327–3330. (d) Barrett, A. G. M.; Bezuidenhoudt, B. C. B.; Dhanak,
D.; Gasiecki, A. F.; Howell, A. R.; Lee, A. C.; Russell, M. A. J. Org.
Chem. 1989, 54, 3321–3324. (e) Buller, M. J.; Gilley, C. B.; Nguyen, B.;
Olshansky, L.; Fraga, B.; Kobayashi, Y. Synlett 2008, 2244–2248. (f)
Isaacson, J.; Loo, M.; Kobayashi, Y. Org. Lett. 2008, 10, 1461–1463. (g)
Linda, P.; Stener, A.; Cipiciani, A.; Savelli, G. J. Heterocycl. Chem. 1983,
in parentheses). c At 100 °C. d 8 at 0.6 M.
and oxidation of an aminal intermediate, similar to A, which
results from indole acting as a nucleophile and attacking the
aldehyde in place of the heterocyclic catalyst.14 This reaction
occurs specifically at the nitrogen atom of indole. Previous
reports indicating nucleophilicity at the C3 position of the
heterocycle generally require activation through Lewis acid15
or other catalyst.16 The divergence of the reactivity in this
system is a particularly interesting observation and further
mechanistic investigations are being carried out to elucidate
the causes for this reactivity. A screen of oxidants and
20, 247–248
.
(5) Shen, T. Y.; Lucas, S.; Sarett, L. H.; Rosegray, A.; Nuss, G. W.;
Willett, J. D.; Ellis, R. L.; Holly, F. W.; Matzuk, A. R.; Wilson, A. N.;
Winter, C. A.; Windholz, T. B.; Risley, E. A.; Stammer, C. H.; Holtz, W. J.;
Witzel, B. E. J. Am. Chem. Soc. 1963, 85, 488–489
.
(6) (a) Chattopadhyay, S.; Chattopadhyay, U.; Mathur, P. P.; Saini, K. S.;
Ghosal, S. Planta Med 1983, 49, 252–254. (b) Ghosal, S.; Lochan, R.;
Ashutosh Kumar, Y.; Srivastava, R. S. Phytochemistry 1985, 24, 1825–
1828
.
(7) (a) Ghosal, S.; Saini, K. S.; Frahm, A. W. Phytochemistry 1983, 22,
2305–2309. (b) Ghosal, S.; Lochan, R.; Ashutosh; Kumar, Y.; Srivastava,
R. S. Phytochemistry 1985, 24, 1825–1828. (c) Maddry, J. A.; Joshi, B. S.;
Ali, A. A.; Newton, M. G.; Pelletier, S. W. Tetrahedron Lett. 1985, 26,
4301–4302. (d) Min, B. S.; Gao, J. J.; Nakamura, N.; Kim, Y. H.; Hattori,
(11) Acylation of indoles with carboxylic acids has been reported with
heat and extended reaction times: Terashima, M.; Fujioka, M. Heterocycles
1982, 19, 91–92. Additionally, acylation has been reported utilizing DCC
as a coupling agent: Bremner, J. B.; Samosorn, S.; Ambrus, J. I. Synthesis
2004, 2653–2658.
M. Chem. Pharm. Bull. 2001, 49, 1217–1219
.
(12) (a) Maki, B. E.; Chan, A.; Phillips, E. M.; Scheidt, K. A. Org.
Lett. 2007, 9, 371–374. (b) Maki, B. E.; Scheidt, K. A. Org. Lett. 2008, 10,
4331–4334. (c) Maki, B. E.; Chan, A.; Phillips, E. M.; Scheidt, K. A.
Tetrahedron 2009,In press, DOI: 10.1016/j.tet.2008.10.033.
(8) For synthesis of amides via coupling of amines and alcohols, see:
(a) Gunanathan, C.; Ben-David, Y.; Milstein, D. Science 2007, 317, 790–
792. (b) Nordstrøm, L. U.; Vogt, H.; Madsen, R. J. Am. Chem. Soc. 2008,
130, 17672–17673. (c) Zweifel, T.; Naubron, J.-V.; Gru¨tzmacher, H. Angew.
Chem., Int. Ed. 2009, 48, 559–563. (d) Reddy, K. R.; Maheswari, C. U.;
(13) For examples of amidation of aldehydes using NHCs, see: (a) Chan,
A.; Scheidt, K. A. Org. Lett. 2005, 7, 905–908. (b) Vora, H. U.; Rovis, T.
J. Am. Chem. Soc. 2007, 129, 13796–13797. (c) Bode, J. W.; Sohn, S. S.
J. Am. Chem. Soc. 2007, 129, 13798–13799. (d) Wong, F. T.; Patra, P. K.;
Seayad, J.; Zhang, Y.; Ying, J. Y. Org. Lett. 2008, 10, 2333–2336.
(14) Although the possibility exists for coupling of the indole with a
substrate in the carboxylic acid oxidation state,11 significant amounts of
the carboxylic acid were not observed with prolonged exposure of 3-phenyl-
1-propanol or hydrocinnamaldehyde to oxidation conditions in the absence
of indole.
Venkateshwar, M.; Kantam, M. L. Eur. J. Org. Chem. 2008, 361, 9–3622
.
(9) (a) Arai, E.; Tokuyama, H.; Linsell, M. S.; Fukuyama, T. Tetrahedron
Lett. 1998, 39, 71–74. (b) Evans, D. A.; Borg, G.; Scheidt, K. A. Angew.
Chem., Int. Ed. 2002, 41, 3188–3191. (c) Dixon, D. J.; Scott, M. S.;
Luckhurst, C. A. Synlett 2003, 2317–2320
.
(10) For oxidation of aminals derived from intramolecular scaffolds with
chromium-based oxidants, see: Node, M.; Nagasawa, H.; Fuji, K. J. Org.
Chem. 1990, 55, 517–521
.
1652
Org. Lett., Vol. 11, No. 7, 2009