10.1002/cctc.201900207
ChemCatChem
FULL PAPER
Cinnamyl 3-(4-(trifluoromethyl)phenyl)propiolate (4s):22c Prepared
K. Stamatopoulos, A. T. Papastavrou, A. Pinaka, G. C. Vougioukalakis,
European J. Org. Chem. 2018, in press; c) S. Nolan, Acc. Chem.
Res.2010, 44, 91-100; d) K. Riener, S. Haslinger, A. Raba, M. Högerl, M.
Cokoja, W. Herrmann, F. Kühn, Chem. Rev. 2014, 114, 5215-5272; e) Y.
Zhang, J. Chan, Energy Environ. Sci. 2010, 3, 408-417.
according to the general procedure and obtained in 91% yield (150 mg,
1
0.45 mmol). H NMR (CDCl3) δ 7.67 (d, J = 8.2 Hz, 2H), 7.61 (d, J = 8.2
Hz, 2H), 7.41 – 7.23 (m, 5H), 6.72 (d, J = 15.9 Hz, 1H), 6.32 (dt, J = 15.9,
6.6 Hz, 1H), 4.90 (d, J = 6.6 Hz, 2H). 13C NMR (CDCl3) δ 153.4, 135.9,
135.7, 133.2, 132.2, 128.7, 128.4, 126.8, 125.6, 123.4, 121.9, 121.8, 84.3,
82.1, 66.9.
[7]
[8]
[9]
R. Menon, A. Biju, V. Nair, BeilsteinJ. Org. Chem. 2016, 12, 444-461.
D.Enders, T. Balensiefer, Acc. Chem. Res. 2004, 37, 534-541.
a) R. Breslow, J. Am. Chem. Soc.1958, 80, 3719-3726; b) H. Stetter,
Angew. Chem., Int. Ed. 1976, 15, 639-647; c) M. Christmann, Angew.
Chem., Int. Ed. 2005, 44, 2632-2634; d) J. De Alaniz, M. Kerr, J. Moore,
T. Rovis, J. Org. Chem. 2008, 73, 2033-2040.
(E)-But-2-en-1-yl
3-(4-methoxyphenyl)propiolate
(4t):33
Prepared
according to the general procedure and obtained in 64% yield (74 mg, 0.32
mmol). 1H NMR (CDCl3) δ 7.51 (d, J=9.0 Hz, 2H), 6.86 (d, J=9.0 Hz, 2H),
5.85 (dq, J=15.0, 6.5 Hz, 1H), 5.64 (dt, J=15.0, 6.5 Hz, 1H), 4.63 (d, J=6.5
Hz, 2H), 3.81 (s, 3H), 1.73 (d, J=2.0 Hz, 3H). 13C NMR (CDCl3) δ 161.4,
154.1, 134.9, 132.6, 124.2, 114.2, 111.3, 87.1, 80.0, 66.5, 55.3, 17.7.
[10] C. Fischer, S. Smith, D. Powell, G. Fu, J. Am. Chem. Soc.2006, 128,
1472-1473.
[11] a) A. Patra, S. Mukherjee, T. Das, S. Jain, R. Gonnade, A. Biju, Angew.
Chem., Int. Ed. 2017, 56, 2730-2734; b) M. Schumacher, B. Goldfuss,
New J. Chem.2015, 39, 4508-4518; c) C. Mayor, C. Wentrup, J. Am.
Chem. Soc.1975, 97, 7467-7480; d) N. Lán, C. Wentrup, Helv. Chim.
Acta 1976, 59, 2068-2073; e) N. Marion, S. Díez-González, S. Nolan,
Angew. Chem., Int. Ed. 2007, 46, 2988-3000.
(E)-But-2-en-1-yl 3-(p-tolyl)propiolate (4u):33 Prepared according to the
general procedure and obtained in 73% yield (78 mg, 0.36 mmol). 1H NMR
(CDCl3) δ 7.46 (d, J=8.5 Hz, 2H), 7.15 (d, J=8.5 Hz, 2H), 5.85 (dq, J=15.0,
7.0 Hz, 1H), 5.64 (tq, J=15.0, 7.0 Hz, 1H), 4.63 (d, J=7.0 Hz, 2H), 2.36 (s,
3H), 1.73(d, J=7.0 Hz, 3H). 13C NMR (CDCl3) δ 154.0, 141.2, 132.9, 132.7,
129.3, 124.2, 116.5, 86.8, 80.2, 66.6, 21.7, 17.6.
[12] B. Maji, Asian J. Org. Chem. 2017, 7, 70-84.
[13] A. Patra, F. Gelat, X. Pannecoucke, T. Poisson, T. Besset, A. Biju, Org.
Lett.2018, 20, 1086-1089.
[14] H. Li, B. Ai, M. Hong, Chinese J. Polym. Sci. 2017, 36, 231-236.
[15] S. Santra, A. Porey, J. Guin, Asian J. Org. Chem.2018, 7, 477-486.
[16] F. Xing, Z. Feng, Y. Wang, G. Du, C. Gu, B. Dai, L. He, Adv. Synth. Catal.
2018, 360, 1704-1710.
Computational details. The computational details of the calculations
carried out are provided at the supporting information of this article.
[17] a) X. Chen, Q. Liu, P. Chauhan, D. Enders, Angew. Chem., Int. Ed.2018,
57, 3862-3873; b) M Zhao, Y. Zhang, J. Chen, L. Zhou, Asian J. Org.
Chem.2017, 7, 54-69.
Acknowledgements
[18] a) H. Garcia, S. Iborra, J. Primo, M. A. Miranda, J. Org. Chem.1986, 51,
4432-4436; b) C. Jia, D. Piao, T. Kitamura, Y. Fujiwara, J. Org. Chem.
2000, 65, 7516-7522; c) K. Ishihara, S. Nakagawa, A.Sakakura,J. Am.
Chem. Soc.2005, 127, 4168-4169 d) L. S. Kocsis, K. M. Brummond, Org.
Lett. 2014, 16, 4158-4161.
We acknowledge the contribution of COST Action CA15106 (C-H
Activation in Organic Synthesis – CHAOS). The Special Account
for Research Grants of the National and Kapodistrian University
of Athens is also gratefully acknowledged for funding (Research
Program 70/3/14872). Moreover, we are thankful for the technical
and human support provided by IZO-SGI SGIker of UPV/EHU,
and the European Funding Horizon 2020-MSCA (ITN-EJD
CATMEC 14/06-721223).
[19] a) K. C. Nicolaou, E. A. Couladouros, P. G. Nantermet, J. Renaud, R. K.
Guy, W. Wrasidlo, Angew. Chem.1994, 33, 15-44; b) K. C. Nicolaou,
J.Renaud, P. G. Nantermet, E. A. Couladouros, R. K. Guy, W. Wrasidlo,
J. Am. Chem. Soc.1995, 117, 2409-2420.
[20] a) K. Ohe, H. Takahashi, S. Uemura, N. Sugita, J. Org. Chem. 1987, 52,
4859-4863; b) R. Takeuchi, Y. Tsuji, M. Fujita, T. Kondo, Y. Watanabe,
J. Org. Chem. 1989, 54, 1831-1836; c) T. Kitamura, I. Mihara, H.
Taniguchi, P. J. Stang, J. Chem. Soc., Chem. Commun.1990, 8, 614-
615; d) Q. Cao, N. L. Hughes, M. J. Muldoon, Chem. Eur. J.2016, 22,
11982-11985.
Keywords: NHCs • organocatalysis • propargylic esters• CO2 •
multicomponent
[1]
a) D. Bourissou, O. Guerret, F. P. Gabbai, G. Bertrand, G. Chem.
Rev.2000, 100, 39-92; b) K. Hirai, T. Itoh H. Tomioka, Chem. Rev.2009,
109, 3275-3332; c) M. Fèvre, J. Pinaud, Y. Gnanou, J. Vignolle, D. Taton,
Chem. Soc. Rev.2013, 42, 2142-2173.
[21] A. Pinaka, G. C. Vougioukalakis, Coord. Chem. Rev.2015, 288, 69-97.
[22] a) Y. Fukue, S. Oi, Y. Inoue, J. Chem. Soc., Chem. Commun.1994, 18,
2091-2092; b) N. Eghbali, J. Eddy, P. T. Anastas, J. Org. Chem. 2008,
73, 6932-6935; c) W. Z. Zhang, W. J. Li, X. Zhang, H. Zhou, X. B. Lu,
Org. Lett.2010, 12, 4748-4751; d) K. Inamoto, N. Asano, K. Kobayashi,
M. Yonemoto, Y. Kondo, Org. Biomol. Chem.2012, 10, 1514-1516; e) X.
Zhang, W. Z. Zhang, L. L. Shi, C. Zhu, J. L. Jiang, X. B. Lu,
Tetrahedron2012,68, 9085-9089; f) B. Yu, Z. F. Diao, C. X. Guo, C. L.
Zhong, L. N. He, Y. N. Zhao, Q. W. Song, A. H. Liu, J. Q. Wang,Green
Chem.2013, 15, 2401-2407; g) J. N. Xie, B. Yu, C. X. Guo, L. N. He,
Green Chem.2015, 17, 4061-4067; h) J. N. Xie, B. Yu, Z. H. Zhou, H. C.
Fu, N. Wang, L. N. He, TetrahedronLett.2015, 56, 7059-7062; i) F. J. Guo,
Z. Z. Zhang, J. Y. Wang, J. Sun, X. C. Fang, M. D. Zhou,
Tetrahedron2017, 73, 900-906; j) G. Xiong, B. Yu, J. Dong, Y. Shi, B.
Zhao, L. N. He, Chem. Comm.2017, 53, 6013-6016; k) G. N. Bondarenko,
E. G. Dvurechenskaya, E. S. Magommedov, I. P. Beletskaya, Catal. Lett.
2017, 147, 2570-2580.
[2]
[3]
A. J. Arduengo, R. L. Harlow, M. Kline, J. Am. Chem. Soc.1991, 113,
361-363.
a) M. Feroci, I. Chiarotto, F. D'Anna, F. Gala, R. Noto, L. Ornano, G. Zollo,
A. Inesi, Chem. Electro. Chem2016, 3, 1133-1141; b) D. M. Flanigan, F.
Romanov-Michailidis, N. A. White, T. Rovis, Chem. Rev.2015, 115,
9307-9387; c) R. S. Menon, A. T. Biju, V. Nair, Chem. Soc. Rev.2015,
44, 5040-5052.
[4]
[5]
a) Y. Canac, M. Soleilhavoup, S. Conejero G. Bertrand, J. Organomet.
Chem. 2004, 689, 3857-3865; b) J. Vignolle, X. Cattoen, D. Bourissou,
Chem. Rev. 2009, 109, 3333-3384.
a) G. C. Vougioukalakis, R. H. Grubbs, Chem. Rev. 2010, 110, 1746-
1787; b) E. Kantchev, C. O'Brien, M. Organ, Angew. Chem.2007, 46,
2768-2813; c) J. Farmer, M. Pompeo, M. Organ, in Ligand Design in
Metal Chemistry: Reactivity and Catalysis, chap. 6 (Eds. : M. Stradiotto,
R. J. Lundgren), John Wiley & Sons, Ltd, 2016, pp. 134-175.
a) N. V. Tzouras, I. K. Stamatopoulos, A. T. Papastavrou, A. Liori, G. C.
Vougioukalakis, Coord. Chem. Rev. 2017, 343, 25-138; b) A. A. Liori, I.
[23] For a pioneering work on the stoichiometric carbon dioxide insertion into
organocopper and organosilver compounds see: T. Tsuda, K. Ueda, T.
Saegusa, Chem. Comm. 1974, 380-381.
[6]
[24] Y. Dingyi, Z. Yugen, Green Chem.2011, 13, 1275-1279.
This article is protected by copyright. All rights reserved.