644
E. Budzisz et al. / Polyhedron 28 (2009) 637–645
lines although their cytotoxic effectiveness was lower in compari-
son to cisplatin and carboplatin. The copper(II) complex 7b exhib-
ited the highest cytotoxic activity with IC50 values in the range of
from the Cambridge Crystallographic Data Centre, 12 Union Road,
Cambridge CB2 1EZ, UK; fax: (+44) 1223-336-033; or e-mail: de-
posit@ccdc.cam.ac.uk. Supplementary data associated with this
article can be found, in the online version, at doi:10.1016/
6.5 lM for HL-60 and 8.0 lM for WM-115 cell lines. So, cytotoxic
effectiveness of compound 7b against melanoma WM-115 cells
was two times better than that of cisplatin. The result strongly sup-
port the view that the observed cytotoxicity can be confidently
attributed to the presence of the metal centres.
References
[1] L.R. Kelland, N.P. Farrell, S. Spinelli, in: N.P. Farell (Ed.), Uses of Inorganic
Chemistry in Medicine, The Royal Society of Chemistry, 1999. pp. 109–144.
[2] Y. Najajreh, J.M. Perez, C. Navarro-Ranninger, D. Gibson, J. Med. Chem. 45
(2002) 5189.
[3] E. Khazanov, Y. Barenholtz, D. Gibson, Y. Najajreh, J. Med. Chem. 45 (2002)
5196–5204.
[4] V. Brabec, Prog. Nucleic Acid Res. Mol. Biol. 71 (2002) 1.
[5] M. Kartalou, J.M. Essigman, Mut. Res. 478 (2001) 23.
[6] V. Brabec, J. Kasparkova, Drug Resist. Updates 51 (2002) 47.
[7] J. Kasparkova, V. Marini, Y. Najajreh, D. Gibson, V. Brabec, Biochemistry 42
(2003) 6321.
4. Conclusions
In this paper, we presented the synthesis and investigation of
highly substituted phosphonic pyrazole ligand and its complexes
with platinum(II), palladium(II) and copper(II). Cytotoxic activity
of these new compounds was compared with activity of their car-
boxylic analogs in order to assess the influence of chemical groups
on cytotoxic activity of the compounds.
[8] M. Gielen, E.R.T. Tiekink (Eds.), Metallotherapeutic Drugs and Metal – based
Diagnostic agents, The Use of Metals in Medicine, Wiley, 2005, p. 359.
[9] M. Devereux, D. O’Shea, A. Kellett, M. McCarn, M. Walsh, D. Egan, C. Deegan, K.
Kedziora, G. Rosair, H. Mueller-Bunz, J. Inorg. Biochem. 101 (2007) 881.
[10] E. Budzisz, Pol. J. Cosm. 9 (2006) 212.
The new phosphonic ligand 2a was obtained in the reaction of
dimethyl 2-methyl-4-oxo-4H-chromen-3-yl-phosphonate with 2-
hydrazinopyridine in methanolic solution.
By monitoring the reaction by 31P NMR spectroscopy we ob-
[11] A.V. Godoy Netto, R.C.G. Frem, A.E. Mauro, Transition Met. Chem. 27 (2002)
279.
served only one product after the opening of the
c-pyrone ring
and cyclization to pyrazole derivative. This is in accordance to
the fact that 2-hydrazinopyridine has only one dissociation con-
stant for N2 and this nitrogen atom is responsible for nucleophilic
attack at the chromone derivative C2 atom.
[12] J. Hamacek, J. Havel, J. Chromatogr. A 834 (1999) 321.
[13] A.R. Amundsen, W.E. Stern, Chem. Abstr. 100 (1984) 161.
[14] M.C. Linder, M. Hazeqh-Azam, Am. J. Clin. Nutr. 63 (1996) 797S.
[15] R. Huang, A. Wallquist, D.G. Covell, Biochem. Pharmacol. 100 (2006) 1389.
[16] B. Coyle, P. Kiusella, M. McCann, D. Devereux, R. O’Connor, M. Clynes, K.
Kavanagh, Toxicol. In Vitro 18 (2004) 63.
[17] M. Devereux, M. McCann, D. O’Shea, R. Kelly, D. Egan, C. Deegan, K. Kavanagh,
V. McKee, G. Finn, J. Inorg. Biochem. 98 (2004) 1023.
[18] J. Easmon, G. Purstinger, G. Heinish, T. Roth, H.H. Fiebig, W. Holzer, W. Jager, M.
Jenny, J. Hofmann, J. Med. Chem. 44 (2001) 2164.
[19] F. Liang, C. Wu, H. Lin, T. Li, D. Gao, Z. Li, J. Wei, C. Zheng, M. Sun, Bioorg. Med.
Chem Lett. 13 (2003) 2469.
[20] M.C. Rodriguez-Arguelles, M.B. Ferrari, F. Bisceglie, C. Pelizzi, G. Pelosi, S.
Pinelli, M. Sassi, J. Inorg. Biochem. 98 (2004) 313.
[21] M.B. Ferrari, F. Bisceglie, G. Pelosi, P. Tarasconi, R. Albertini, P.P. Dall’Aglio, S.
Pinelli, A. Bergamo, G. Sava, J. Inorg. Biochem. 98 (2004) 301.
[22] S. Sharma, F. Athar, M.R. Maurya, F. Naqui, A. Azam, Eur. J. Med. Chem. 40
(2005) 557.
[23] S. Torelli, C. Belle, I. Gautier-Luneau, J.L. Pierre, E. Saint-Aman, J.M. Latour, L. Le
Pape, D. Luneau, Inorg. Chem. 39 (2000) 3526.
The highly substituted phosphonic pyrazole 2a was used as li-
gand for the synthesis of novel neutral platinum(II), palladium(II)
and copper(II) complexes 3a–7a. Phosphonic compounds were
compared with previously synthesized carboxylic analogs 2b–7b,
whose cytotoxic assay had been performed on L1210 and K562
leukemia cell lines. Copper(II) complexes with both phosphonic
and carboxylic ligands were synthesized in 1:1 and 2:1 molar ratio.
The structure of the ligands and their metal complexes was con-
firmed by spectral and elemental analyses. The molecular struc-
tures of phosphonic complexes of platinum(II) 3a and copper(II)
6a were confirmed by X-ray analysis. The complexes exhibit dis-
torted tetragonal planar configuration and trigonal bipyramidal
configuration at the platinum(II) and copper(II) centres,
respectively.
[24] S. Torelli, C. Belle, S. Hamman, J.L. Pierre, E. Saint-Aman, Inorg. Chem. 41 (2002)
3983.
[25] K. Selmeczi, M. Reglier, M. Giorgi, G. Speier, Coord. Chem. Rev. 24 (2003)
5191.
Studies on the cytotoxicity evaluated on leukemia and mela-
noma cell lines showed that in most cases carboxylic compounds
have higher activity than that of phosphonic analogs. Cytotoxic
effectiveness of compound 7b against melanoma WM-115 cells
was two times better than that of cisplatin. Copper(II) complexes
were more active in the induction of melanoma cell death than
the platinum(II) and palladium(II) complexes. Higher cytotoxic
activity of investigated copper(II) complexes suggests that the
mechanism of actions of these compounds may differ from the
mechanism of action of platinum(II) or palladium(II) complexes.
The reaction of complex 5b with 9-methylguanine has been inves-
tigated and we have obtained a new compound 8b of the formula
LCu9MeGCl2.
[26] M. Thirumavalavan, P. Akilan, M. Kandaswamy, Kandaswamy Chinnakali, G.
Senthil Kumar, H.K. Fun, Inorg. Chem. 42 (2003) 3308.
[27] H. Borzel, P. Comba, H. Pritzkow, Chem. Commun. (2001) 97.
[28] E. Monzani, G. Battaini, A. Perotti, L. Casella, M. Gullotti, L. Santagostini, G.
Nardin, L. Randaccio, S. Geremia, P. Zanello, G. Opromolla, Inorg. Chem. 38
(1999) 5359.
[29] I.A. Koval, K. van der Schilden, A.M. Schuitema, P. Gamez, C. Belle, J.-L. Pierre,
M. Luken, B. Krebs, O. Roubeau, J. Reedijk, Inorg. Chem. 44 (2005) 4372.
[30] G. Zhao, H. Lin, Curr. Med. Chem. Anti-Cancer Agents 5 (2005) 137.
[31] A. Orejon, C. Claver, L.A. Oro, A. Elduque, M.T. Pinillos, J. Mol. Catal. A Chem.
136 (1998) 279.
[32] C. Claver, P. Kalck, M. Ridmy, A. Thorez, L.A. Oro, M.T. Pinillos, M. Carmen-
Apreda, F.H. Cano, C. Foces-Foces, J. Chem. Soc., Dalton Trans. 6 (1988) 1523.
[33] N. Saha, A. Saha, A. Misra, Polyhedron 13 (1994) 2025.
[34] K. Sakai, Y. Tomita, T. Ue, K. Goshima, M. Ohminato, T. Tsubomura, K.
Matsumoto, K. Ohmura, K. Kawakami, Inorg. Chim. Acta 297 (2000) 64.
[35] A.G.M.M. Hossain, T. Nagaoka, K. Ogura, Electrochim. Acta 41 (1996) 2773.
[36] S.J. Kim, S.H. Kang, K.-M. Park, H. Kim, W.-C. Zin, M.-G. Choi, K. Kim, Chem.
Mater. 10 (1998) 1889.
Acknowledgements
[37] J. Barbera, A. Elduque, R. Gimenez, L.A. Oro, J.L. Serrano, Angew. Chem., Int. Ed.
Engl. 35 (1996) 2832.
[38] A. Looney, G. Parkin, R. Alsfasser, M. Ruf, H. Vahrenkamp, Angew. Chem., Int.
Ed. Engl. 31 (1992) 92.
[39] A. Kufelnicki, M. Wozniczka, L. Checinska, M. Miernicka, B. Budzisz,
Polyhedron 26 (2007) 2589.
[40] M. Miernicka, A. Szulawska, M. Czyz, I.-P. Lorenz, P. Mayer, B. Karwowski, E.
Budzisz, J. Inorg. Biochem. 102 (2008) 157.
Financial support from Medical University of Lodz (Grant No.
502-13-629) and the DAAD for fellowship No. A/07/01244 and
Grant No. 503-3015-2 to Department of Pharmaceutical Biochem-
istry at Medical University of Lodz are gratefully acknowledged.
[41] K. Kostka, S. Pastuszko, M. Porada, Phosphorus Sulfur Silicon Related Elements
71 (1992) 67.
Appendix A. Supplementary data
[42] G.M. Coppola, R.W. Dodsworth, Synthesis 7 (1981) 523.
[43] C.G. Van Kralingen, J.K. De Ridder, J. Reedijk, Inorg. Chim. Acta 36 (1979) 69.
[44] E. Budzisz, U. Krajewska, M. Rozalski, Pol. J. Pharmacol. 56 (2004) 473.
CCDC 679540 and 679541 contains the supplementary crystal-
lographic data for 3a and 6a. These data can be obtained free of