X.-Q. Zou et al. / Bioorg. Med. Chem. Lett. 21 (2011) 1222–1226
1225
7. Bohn, H.; Brendel, J.; Martorana, P. A.; Schonafinger, K. Br. J. Pharmacol. 1995,
7
6
5
4
3
2
1
0
*
114, 1605.
*
8. Pushpavalli, G.; Kalaiarasi, P.; Veeramani, C.; Pugalendi, K. V. Eur. J. Pharmacol.
*
*
*
2010, 631, 36.
*
9. Sathiavelu, J.; Senapathy, G. J.; Devaraj, R.; Namasivayam, N. J. Pharm.
Pharmacol. 2009, 61, 809.
10. Zhang, T.; Chen, X.; Qu, L.; Wu, J.; Cui, R.; Zhao, Y. Bioorg. Med. Chem. 2004, 12,
6097.
11. Brown, E.; Hurd, N. S.; McCall, S.; Ceremuga, T. E. AANA J. 2007, 75, 333.
12. Harris, G. K.; Qian, Y.; Leonard, S. S.; Sbarra, D. C.; Shi, X. J. Nutr. 2006, 136,
1517.
13. Woo, K. J.; Jeong, Y. J.; Inoue, H.; Park, J. W.; Kwon, T. K. FEBS Lett. 2005, 579,
*
705.
ˇ
ˇ ˇ
14. Lukacínová1, A.; Benacka, R.; Keller, J.; Maguth, T.; Kurila, P.; Vaško, L. Acta Vet.
Brno. 2008, 77, 175.
15. Matsui, T.; Kobayashi, M.; Hayashida, S.; Matsumoto, K. Biosci. Biotechnol.
Biochem. 2002, 66, 689.
16. Zou, X. Q.; Peng, S. M.; Hu, C. P.; Tan, L. F.; Yuan, Q.; Deng, H. W.; Li, Y. J. Bioorg.
Med. Chem. 2010, 18, 3020.
17. Zhang, Z. T.; Chen, L. L. Yao Xue Xue Bao 2007, 42, 492.
18. Suresh Babu, K.; Hari Babu, T.; Srinivas, P. V.; Hara Kishore, K.; Murthy, U. S.;
Rao, J. M. Bioorg. Med. Chem. Lett. 2006, 16, 221.
19. Park, H.; Dao, T. T.; Kim, H. P. Eur. J. Med. Chem. 2005, 40, 943.
20. Dao, T. T.; Chi, Y. S.; Kim, J.; Kim, H. P.; Kim, S.; Park, H. Bioorg. Med. Chem. Lett.
2004, 14, 1165.
21. Peng, S. M.; Zou, X. Q.; Ding, H. L.; Ding, Y. L.; Lin, Y. B. Bioorg. Med. Chem. Lett.
2009, 19, 1264.
compounds (10µmol/L)
lmol/L chrysin, chrysin derivatives (8a,b, 9a,b, 10 and 11), 4-
phenyl-3-methanol-furoxan, SNP and rosiglitazone on HepG2 glucose consumption
(values are mean SD; n = 3; ⁄P < 0.05 vs 0.1% DMSO. Differences between
individual groups were analyzed by using ANOVA followed by Dunett’s test).
Figure 1. Effects of 10
22. Shin, J. S.; Kim, K. S.; Kim, M. B.; Jeong, J. H.; Kim, B. K. Bioorg. Med. Chem. Lett.
1999, 9, 869.
23. Huang, J. S.; Chuang, L. Y.; Guh, J. Y.; Huang, Y. J. Toxicol. Sci. 2009, 111, 109.
24. Liang, C.; Ren, Y.; Tan, H.; He, Z.; Jiang, Q.; Wu, J.; Zhen, Y.; Fan, M.; Wu, Z. Br. J.
Pharmacol. 2009, 158, 1865.
25. Turnbull, C. M.; Cena, C.; Fruttero, R.; Gasco, A.; Rossi, A. G.; Megson, I. L. Br. J.
Pharmacol. 2006, 148, 517.
26. Hamnvik, O. P.; McMahon, G. T. Mt. Sinai J. Med. 2009, 76, 234.
27. Henstridge, D. C.; Kingwell, B. A.; Formosa, M. F.; Drew, B. G.; McConell, G. K.;
Duffy, S. J. Diabetologia 2005, 48, 2602.
leg glucose uptake at rest in patients with type 2 diabetes.27 The
present study indicated that the NO donor 4-phenyl-3-methanol-
furoxan and SNP significantly promoted glucose consumption of
HepG2 cells. These findings provide a rationale that NO may there-
fore be an important mediator of peripheral glucose disposal and
the potential therapeutic role of NO donor on chronic vascular
complications in diabetic patients warrants more attention.
An O7-furoxan-based NO donor moiety was attached to chrysin.
The AR, AGE formation, and glucose consumption assays, as well as
NO-releasingcapacities, showedthat:(i) theparentcompoundchry-
sin and the NO releasing positive reference SNP are potent AGE
inhibitors; (ii) the intermediate compounds 4-phenyl-3-methanol-
furoxan and the NO releasing positive reference SNP are strong
promoter on glucose consumption of HepG2 cells; (iii) all the hybrid
prodrugs release NO slowly upon incubation with PBS in the pres-
Further reading
28. 3-(Methylol phenoxymethyl)-4-phenyl-1,2,5-oxadiazole-2-oxide acylation
coupling-carboxymethyl chrysin (8a, 8b): 8a (69.2% yield, mp: 134–135 °C).
1H NMR (CDCl3) d (ppm): 12.70 (s, 1H), 7.76–7.82 (m, 4H), 7.45–7.51 (m, 6H),
7.27–7.29 (d, 2H), 6.91–6.93(m, 2H), 6.62 (s, 1H), 6.43–6.44 (d, 1H), 6.29–6.30
(d, 1H), 5.15(s, 2H), 5.02(s, 2H), 4.67 (s, 2H). EI-MS (m/z): 592. Anal. Calcd for
C
33H24N2O9: C, 66.89; H, 4.08; N, 4.73. Found: C, 66.58; H, 4.42; N, 4.37.
Compound 8b (68% yield, mp: 155–156 °C). 1H NMR (CDCl3) d (ppm): 12.76 (s,
1H), 7.87 (s, 4H), 7.55 (s, 6H), 7.32 (s, 1H), 6.97–7.02 (d, 3H), 6.69 (s, 1H), 6.53 (s,
1H), 6.39 (d, 1H), 5.25 (s, 2H), 5.10 (s, 2H), 4.80 (s, 2H), EI-MS (m/z): 592. Anal.
Calcd for C33H24N2O9: C, 66.89; H, 4.08; N, 4.73; Found: C, 66.51; H, 4.45; N,
4.34. Characteristic of O5-acetyl-O7-Chrysin acetic acid[3-(4-phenyl-1,2,
5-oxadiazole-2-oxide-3-)methoxyl-]benzyl ester (9a, 9b): 9a (31.5% yield,
mp: 119–121 °C). 1H NMR (CDCl3) d (ppm): 7.83–7.84 (m, 4H), 7.50–7.57 (m,
6H), 7.30–7.32 (d, 2H), 6.95–6.97 (d, 2H), 6.81–6.82 (d, 1H), 6.65 (s, 2H), 5.21 (s,
2H), 5.05 (s, 2H), 4.75 (s, 2H), 2.43 (s, 3H). EI-MS (m/z): 634. Anal. Calcd for
ence of L-cysteine; (iv) all the furoxan based derivatives have high
inhibitory effects on AR and AGE formation; (v) the 5-OH group is
the key group that determines the inhibition of AR and promotion
of glucose consumption; (vi) O7-[3-(methylol phenoxymethyl)-
4-phenyl-1,2,5-oxadiazole-2-oxide carboxymethyl acylation] 8a,
8b and O7-[3-methylol-4-phenyl-1,2,5-oxadiazole-2-oxide car-
boxymethyl acylation] analog 10 significantly promote glucose
consumption of HepG2 compared to the blank vehicle 0.1% DMSO.
In conclusion, these hybrid furoxan-based NO donor derivatives
offer a mutual prodrug design concept for the development of ther-
apeutic or preventive agents for vascular complications due to
diabetes.
C
35H26N2O10: C, 66.24; H, 4.13; N, 4.41. Found: C, 66.62; H, 4.29; N, 4.05.
Compound 9b (47.3% yield, mp: 165–166 °C). 1H NMR (CDCl3) d (ppm): 7.83–
7.84 (m, 4H), 7.50–7.56 (m, 6H), 7.29–7.31(d, 1H), 7.00 (s, 2H), 6.93–6.95(d, 1H),
6.85 (s, 1H), 6.67 (s, 1H), 6.60 (s, 1H), 5.24 (s, 2H), 5.08 (s, 2H), 4.80 (s, 2H), 2.43
(s, 3H), EI-MS (m/z): 634. Anal. Calcd for C35H26N2O10: C, 66.24; H, 4.13; N, 4.41.
Found: C, 66.64; H, 4.26; N, 4.03. Characteristic of O7-chrysin acetic acid(4-
phenyl-1,2,5-oxadiazole-2-oxide-3-)methyl ester 10 (1.53 g, 63% yield, mp:
174–175 °C). 1H NMR (CDCl3) d (ppm): 12.76 (s, 1H), 7.87–7.89 (m, 2H), 7.63–
7.65 (m, 2H), 7.49–7.57 (m, 6H), 6.68 (s, 1H), 6.46–6.47 (d, 1H), 6.32–6.33
(d, 1H), 5.31 (s, 2H), 4.76 (s, 2H), EI-MS (m/z): 486; Anal. Calcd for C26H18N2O8: C,
64.20; H, 3.73; N, 5.76. Found: C, 64.07; H, 3.98; N, 5.38. Characteristic of O5-
acetyl-O7-Chrysin acetic acid(4-phenyl-1,2,5-oxadiazole-2-oxide-3-)methyl
ester 11 (0.23 g, 43.5% yield, mp: 179–180 °C). 1H NMR (CDCl3) d (ppm):
7.86–7.88 (m, 2H), 7.65–7.66 (d, 2H), 7.50–7.53 (m, 6H), 7.26 (s, 1H), 6.64–6.66
(d, 2H), 5.33 (s, 2H), 4.78 (s, 2H), 2.43 (s, 3H), EI-MS (m/z): 528. Anal. Calcd for
Acknowledgments
We are grateful to the Hunan Province office of Education Funds
(10 C1288) and Dr. Xiangtan University Start Funds (06KZ|
KZ08035) for financial support for this research.
C
28H20N2O9: C, 63.64; H, 3.81; N, 5.30. Found: C, 63.93; H, 3.97; N, 4.96.
29. Glucose consumption assays: HepG2 cells were plated into 96-well tissue
culture plates with some wells left blank. After the cells reached 80–90%
confluence, the medium was removed and the same culture medium
containing target compounds, chrysin or rosiglitazone (standard product)
was added to wells. After 24 h of treatment, glucose was assayed with
diagnostic kits, a MTT assay was used to monitor the cell number and to
adjust the glucose consumption values. [Zou, X. Q.; Peng, S. M.; Hu, C. P.; Tan,
L. F.; Yuan, Q.; Deng, H. W.; Li, Y. J. Bioorg. Med. Chem. 2010, 18, 3020.]
30. AR inhibitory activity: The inhibitory activity of the compounds on aldose
References and notes
1. Honing, M. L.; Morrison, P. J.; Banga, J. D.; Stroes, E. S.; Rabelink, T. J. Diabetes
Metab. Rev. 1998, 14, 241.
2. Gewaltig, M. T.; Kojda, G. Cardiovasc. Res. 2002, 55, 250.
3. da Silva, C. G.; Specht, A.; Wegiel, B.; Ferran, C.; Kaczmarek, E. Circulation 2009,
119, 871.
reductase was carried out using
enzyme (750 g/mL protein), and different concentrations of the compounds
(0.1–10 mol/L) in 50 mM PBS (pH 6.0) containing 5 mM b-mercaptoethanol,
a 200 lL volume optimized amount of
4. Domenico, R. Curr. Pharm. Des. 2004, 10, 1667.
l
5. Thadani, U.; Manyari, D.; Parker, J. O.; Fung, H. L. Circulation 1980, 61, 526.
6. Civelli, M.; Giossi, M.; Caruso, P.; Razzetti, R.; Bergamaschi, M.; Bongrani, S.;
Gasco, A. Br. J. Pharmacol. 1996, 118, 923.
l
0.24 mM NADPH, 0.4 M Li2SO4 and 2.5 mM of glyceraldehyde (substrate)
were added. The reaction was initiated by addition of glyceraldehyde and the