2288
P. Pia˛tek, A. Litwin / Tetrahedron 65 (2009) 2285–2289
(–COOCH3). HRMS (ESI): m/z calcd for C40H46O13Na: 757.2836;
found: 757.2829 [MþNa]þ.
148.6,142.1,118.2,111.7,108.7, 71.2, 70.9, 69.5, 68.0; HRMS (ESI): m/z
calcd for C28H38 N2O14Na: 649.2221; found: 649.2214 [MþNa]þ.
4.3. General method for the deprotection of monoprotected
tetraethyleneglycol derivatives
4.4.2. syn-Di(formylbenzo)-30-crown-10 ether (4b)
The crude material was purified by column chromatography
(acetone/hexanes/1:1, then 7:3) to give a white solid, which was
further purified by crystallization from EtOH to afford 4b in 46%
yield. Mp 123–124 ꢀC; Rf (80% acetone/hexanes)¼0.49; 1H NMR
(CDCl3) 9.82 (s, 2H, CHO), 7.43 (dd, J¼7.8, 1.8, 2H), 7.37 (d, J¼1.8, 2H),
6.94 (d, J¼8.0, 2H), 4.24–4.17 (m, 8H), 3.94–3.88 (m, 8H), 3.81–3.67
(m, 16H). 13C NMR (CDCl3) 191.0, 154.4, 149.3, 130.3, 126.9, 112.2,
111.4, 71.2, 71.1, 70.8, 69.6, 69.5, 69.2, 69.1. HRMS (ESI): m/z calcd for
C30H40O12Na: 615.2417; found: 615.2415 [MþNa]þ.
To the solution of 2a–c (1.2–5.2 mmol) in CH2Cl2 (3–10 mL)
cooled to 4 ꢀC trifluoroacetic acid (3–10 mL) was added. The cooling
bath was removed and the reaction mixture was stirred for 1 h. The
reaction mixture was then diluted with CH2Cl2 and water. The
aqueous layer was neutralized with 1 M NaOH, and the organic
phase was separated. The aqueous layer was extracted twice with
CH2Cl2. All combined organic extracts were dried (MgSO4), filtered
and concentrated. The obtained residue was redissolved in
hexanes/AcOEt 1:1 (40–100 mL) and filtered through short pad of
silica gel. The filtrate was discharged. Next the silica gel was washed
with acetone. The solvent was removed in vacuo to give diphenol of
type 3.
4.4.3. syn-Di(carbomethoxybenzo)-30-crown-10 ether (4c)
The crude material was purified by column chromatography
(CH2Cl2 then 2% MeOH/CH2Cl2) to give a white solid, which was
further purified by crystallization from EtOH to afford 4c in 45%
yield. Mp¼114–115 ꢀC; Rf (6% MeOH/CH2Cl2)¼0.32; 1H NMR
(CDCl3) 7.64 (dd, J¼8.2, 2.0, 2H), 7.52 (d, J¼2.0, 2H), 6.85 (d, J¼8.6,
2H), 4.21–4.16 (m, 8H), 3.92–3.78 (m,14H), 3.79–3.76 (m, 8H), 3.71–
3.69 (m, 8H); 13C NMR (CDCl3) 167.0 (2ꢁ–C]O), 153.0, 148.4, 124.1,
123.1, 114.6, 112.4, 71.2, 71.0, 70.9, 69.8, 69.6, 69.2, 69.0, 52.1
(–OCH3); HRMS (ESI): m/z calcd for C32H44 O14Na: 675.2629; found:
675.2237 [MþNa]þ.
4.3.1. Tetraethyleneglycol bis(2-hydroxy-5-nitrobenzene) (3a)
Yellow solid. Yield 97%. Mp¼81–82 ꢀC; Rf (80% acetone/
hexanes)¼0.90; 1H NMR (CDCl3) 8.59 (br s, –OH), 7.87 (dd, J¼8.2,
1.8, 2H), 7.79 (d, J¼1.8, 2H), 6.93 (d, J¼3.6, 2H), 4.26–4.25 (m, 4H),
3.91–3.89 (m, 4H), 3.77–3.72 (m, 8H); 13C NMR (CDCl3) 153.7, 145.9,
140.8, 119.8,115.4, 110.0, 70.7, 70.4, 69.6, 69.2, 60.7; HRMS (ESI): m/z
calcd for C20H24 N2O11Na: 491.1278; found: 491.1282 [MþNa]þ.
Acknowledgements
4.3.2. Tetraethyleneglycol bis(2-hydroxy-5-formylbenzene) (3b)
White solid. Yield 98%. Rf (AcOEt)¼0.25; 1H NMR (CDCl3) 9.79 (s,
2H, 2ꢁ–CHO), 8.44 (br s, 2H, 2ꢁ–OH), 7.44–7.40 (m, 4H), 7.0 (d,
J¼8.6, 2H), 4.27–4.23 (m, 4H), 3.92–3.88 (m, 4H), 3.76–3.69 (m, 8H);
13C NMR (CDCl3) 191.0 (2ꢁ–CHO), 153.6, 146.9, 130.2, 128.2, 115.9,
111.5, 70.4, 70.2, 69.3, 68.2; HRMS (ESI): m/z calcd for C22H26O9Na:
457.1475; found: 457.1475 [MþNa]þ.
Financial support from The State Committee for Scientific Re-
search (project T09A-012-030) is gratefully acknowledged.
References and notes
1. (a) Izatt, R. M.; Bradshaw, J. S.; Nielsen, S.; Lamb, J. D.; Christensen, J. J. Chem.
Rev. 1985, 85, 271–339; (b) Izatt, R. M.; Pawlak, K.; Bradshaw, J. S.; Bruening,
R. L. Chem. Rev. 1991, 91, 1721–2085; (c) Izatt, R. M.; Pawlak, K.; Bradshaw, J. S.;
Bruening, R. L. Chem. Rev. 1995, 95, 2529–2586.
2. Buschmann, H.-J.; Wego, A.; Schollmer, E. Inorg. Chem. Commun. 2001, 4, 9–11.
3. Steed, J. W.; Atwood, J. L. Supramolecular Chemistry; John Wiley & Sons: Chi-
chester, UK, 2000; pp 118–119.
4. Steed, J. W.; Atwood, J. L. Supramolecular Chemistry; John Wiley & Sons: Chi-
chester, UK, 2000; pp 38–42.
5. (a) Colquhoun, H. M.; Stoddart, J. F.; Williams, D. J.; Wolstenholme, J. B.; Zar-
zycki, R. Angew. Chem., Int. Ed. Engl. 1981, 20, 1051–1053; (b) Colquhoun, H. M.;
Goodings, E. P.; Maud, J. M.; Stoddart, J. F.; Wolstenholme, J. B.; Williams, D. J.
J. Chem. Soc., Perkin Trans. 2 1985, 607–625.
6. (a) Orda-Zgadzaj, M.; Abraham, M. Tetrahedron 2008, 64, 2669–2676; (b) Cas-
tillo, D.; Astudillo, P.; Mares, J.; Gonzalez, F. J.; Vela, A.; Tiburcio, J. Org. Biomol.
Chem. 2007, 5, 2252–2256; (c) Ashton, P. R.; Glink, P. T.; Schiavo, C.; Stoddart,
J. F.; Chrystal, E. J. T.; Menzer, S.; Williams, D. J.; Tasker, P. A. Angew. Chem., Int.
Ed. Engl. 1995, 34, 1869–1871.
7. For selected examples, see: (a) Hirose, K.; Ishibashi, K.; Shiba, Y.; Doi, Y.; Tobe, Y.
Chem.dEur. J. 2008, 14, 5803–5811; (b) Li, S.; Liu, M.; Zhang, J.; Zheng, B.; Zhang,
C.; Wen, X.; Li, N.; Huang, F. Org. Biomol. Chem. 2008, 6, 2103–2107; (c) Badjic´, J.
D.; Balzani, V.; Credi, A.; Lowe, J. N.; Silvi, S.; Stoddart, J. F. Chem.dEur. J. 2004,
10, 1926–1935; (d) Orita, A.; Okano, J.; Tawa, Y.; Jiang, L.; Otera, J. Angew. Chem.,
Int. Ed. 2004, 43, 3724–3728; (e) Tokunaga, Y.; Akasaka, K.; Hisada, K.; Shimo-
mura, Y.; Kakuchi, S. Chem. Commun. 2003, 2250–2251; (f) Nikitin, K.; Long, B.;
Fitzmmaurice, D. Chem. Commun. 2003, 282–283; (g) Takata, T.; Kawasaki, H.;
Kihara, N.; Furusho, Y. Macromolecules 2001, 34, 5449–5456; (h) Zehnder, D. W.,
II; Smithrud, D. B. Org. Lett. 2001, 3, 2485–2487.
8. (a) Chiu, S.-H.; Rowan, S. J.; Cantrill, S. J.; Ridvan, L.; Ashton, P. R.; Garrell, R. L.;
Stoddart, J. F. Tetrahedron 2002, 58, 807–814; (b) Cao, J.; Fyfe, M. C. T.; Stoddart,
J. F.; Cousins, G. R. L.; Glink, P. T. J. Org. Chem. 2000, 65, 1937–1946; (c) Gong, C.;
Gibson, H. W. Macromolecules 1997, 30, 8524–8525; (d) Shen, Y. X.; Gibson, H.
W. Macromolecules 1992, 25, 2058–2059.
9. For selected examples, see: (a) Tomcsi, M. R.; Stoddart, J. F. J. Org. Chem. 2007,
72, 9335–9338; (b) Halterman, R. L.; Pan, X.; Martyn, D. E.; Moore, J. L.; Long, A.
T. J. Org. Chem. 2007, 72, 6454–6458; (c) Gibson, H. W.; Nagvekar, D. S.; Ya-
maguchi, N.; Bhattacharjee, S.; Wang, H.; Vergne, M. J.; Hercules, D. M. Mac-
romolecules 2004, 37, 7514–7529; (d) D’Acerno, C.; Doddi, G.; Ercolani, G.;
Mencarelli, P. Chem.dEur. J. 2000, 6, 3540–3546; (e) Ashton, P. R.; Huff, J.;
Menzer, S.; Parsons, I. W.; Preece, J. A.; Stoddart, J. F.; Tolley, M. S.; White, A. J. P.;
Williams, D. J. Chem.dEur. J. 1996, 2, 31–44.
4.3.3. Tetraethyleneglycol bis(2-hydroxy-5-carbomethoxy-
benzene) (3c)
White solid. Yield 86%. Mp 64–66 ꢀC (lit14 62–63 ꢀC); Rf (60%
AcOEt/hexanes)¼0.33; 1H NMR (CDCl3) 8.2 (br s, –OH), 7.58 (dd,
J¼8.2, 1.8, 2H, 2ꢁH5), 7.49 (d, J¼1.8, 2H), 6.85 (d, J¼8.2, 2H), 4.19–
4.14 (m, 4H), 3.84–3.79 (m, 4H), 3.82 (s, 6H, –OCH3), 3.66–3.3.65 (m,
8H); 13C NMR (CDCl3) 167.1 (2ꢁ–C]O), 151.9, 145.9, 125.2, 121.8,
115.6, 115.2, 70.5, 70.33, 69.4, 68.9, 52.1 (2ꢁ–OCH3).
4.4. General method for the crown ether formation
Diphenols 3a–c (0.85–3.5 mmol) were dissolved in dry aceto-
nitrile (50–150 mL) in an oven-dried two neck round bottom flask
equipped with a dropping funnel and a reflux condenser. To this
solution CsF (3.4–14 mmol, 4 equiv) was added followed by the
addition of a solution of tetraethyleneglycol bistosylate (0.85–
3.5 mmol, 1 equiv) in dry acetonitrile. The suspension was then
stirred at 65 ꢀC (oil bath temperature) for 3 days. The solution was
allowed to cool to room temperature and water was added to dis-
solve any solids. The solvent was removed in vacuo and the residue
was dissolved in CH2Cl2 and washed with water and saturated
sodium bicarbonate. The organic layer was dried over MgSO4, fil-
tered through a cotton plug and concentrated. Details of further
products purification are described below.
4.4.1. syn-Di(nitrobenzo)-30-crown-10 ether (4a)
The crude product was purified by crystallization from hot
AcOEt to afford 4a as a light-yellow solid. Yield 54%. Mp¼119–
123 ꢀC; Rf (80% acetone/hexanes)¼0.70; 1H NMR (CDCl3) 7.84–7.80
(m, 2H), 7.70–7.68 (m, 2H), 6.84 (dd, J¼8.9, 1.2, 2H), 4.02–4.14 (m,
8H,), 3.91–3.85 (m, 8H), 3.75–3.64 (m, 16H); 13C NMR (CDCl3) 154.5,
10. (a) Smukste, I.; Smithrud, D. B. J. Org. Chem. 2003, 68, 2547–2558; (b) Sun, Q.;
Wang, H.; Yang, C.; Li, Y. J. Mater. Chem. 2003, 13, 800–806; (c) Smukste, I.;