Please do not adjust margins
Green Chemistry
Page 6 of 7
ARTICLE
Journal Name
green LEDs (535 nm) for 18 h at rt. The reaction mixture of two
vials with the same content was combined and diluted with
saturated aqueous solution of NaHCO3 (20 mL). It was extracted
with EA (3 x 20 mL) and the combined organic phases were
washed with brine (20 mL), dried over Na2SO4 and concentrated
in vacuum. Purification of the crude product was performed by
8
9
Chem. Soc., 2002, 124, 11250-11251; (b) D. Tanaka, S.
DOI: 10.1039/C6GC01101B
P. Romeril and A. G. Myers, J. Am. Chem. Soc., 2005, 127
,
10323-10333.
9 R. Shang and L. Liu, Sci. China Chem., 2011, 54, 1670-
1687.
automated flash column chromatography (PE/EA = 19:1 to 1:1) 10
yielding the corresponding product 3 or 4 as colorless oil.
10 (a) Z. Zuo and D. W. C. MacMillan, J. Am. Chem. Soc.,
2014, 136, 5257-5260; (b) Z. Zuo, H. Cong, W. Li, J. Choi,
G. C. Fu and D. W. C. MacMillan, J. Am. Chem. Soc., 2016,
138, 1832-1835; (c) Z. Zuo, D. T. Ahneman, L. Chu, J. A.
Terrett, A. G. Doyle and D. W. C. MacMillan, Science,
2014, 345, 437-440; (d) Y. Jin, M. Jiang, H. Wang and H.
Conclusions
In conclusion, we have developed a metal-free, photocatalytic
method for the decarboxylative alkylation of biomass-derived
compounds. The advantage of this procedure over other
methods reported in literature is the broad substrate scope
Fu, Scientific Reports, 2016, 6, 20068.
11
12
11 (a) A. Noble and D. W. C. MacMillan, J. Am. Chem.
Soc., 2014, 136, 11602-11605; (b) A. Noble, S. J.
McCarver and D. W. C. MacMillan, J. Am. Chem. Soc.,
2015, 137, 624-627.
including cheap and abundant α-amino acids, α-oxy acids and
fatty acids as well as primary, secondary and tertiary substrates.
In addition, the reactions can be carried out under mild,
environmentally friendly conditions with the metal-free,
organic dye eosin Y as photocatalyst. The carboxylic acids are
activated by esterification to N-(acyloxy)phthalimides and then
reductively cleaved upon irradiation with green light. This
generates alkyl radicals, which undergo cross-coupling with
electron-deficient alkenes. Thereby, largely new compounds for
the synthesis of pharmaceuticals or fine chemicals are
generated. The method contributes to the ongoing efforts
replacing fossil resources by renewable feedstocks in the
synthesis of chemical intermediates.
12 (a) C. Hu and Y. Chen, Org. Chem. Front., 2015, 2,
1352-1355; (b) S. B. Lang, K. M. O'Nele, J. T. Douglas and
J. A. Tunge, Chem. Eur. J., 2015, 21, 18589-18593; (c) S.
B. Lang, K. M. O’Nele and J. A. Tunge, J. Am. Chem. Soc.,
2014, 136, 13606-13609.
13 (a) J. Yang, J. Zhang, L. Qi, C. Hu and Y. Chen, Chem.
Comm., 2015, 51, 5275-5278; (b) F. Le Vaillant, T.
13
Courant and J. Waser, Angew. Chem. Int. Ed., 2015, 54
,
11200-11204; (c) H. Huang, G. Zhang and Y. Chen,
Angew. Chem. Int. Ed., 2015, 54, 7872-7876; (d) Q.-Q.
Zhou, W. Guo, W. Ding, X. Wu, X. Chen, L.-Q. Lu and W.-
J. Xiao, Angew. Chem. Int. Ed., 2015, 54, 11196-11199.
14 (a) S. Ventre, F. R. Petronijevic and D. W. C.
MacMillan, J. Am. Chem. Soc., 2015, 137, 5654-5657; (b)
X. Wu, C. Meng, X. Yuan, X. Jia, X. Qian and J. Ye, Chem.
Commun., 2015, 51, 11864-11867.
15 (a) C. Cassani, G. Bergonzini and C.-J. Wallentin, Org.
Lett., 2014, 16, 4228-4231; (b) J. D. Griffin, M. A. Zeller
and D. A. Nicewicz, J. Am. Chem. Soc., 2015, 137, 11340-
11348.
14
15
Acknowledgements
We thank the German Science Foundation (DFG, GRK 1626,
Chemical Photocatalysis) for financial support for this work.
References
1
1 P. T. Anastas and J. C. Warner, Green Chemistry:
Theory and Practice, Oxford University Press, New York,
1998.
2 (a) A. Pfennig, Chem. Ing. Tech., 2007, 79, 2009-2018;
(b) R. Watson, in Ressourcenverknappung, 50
Schlüsselideen der Zukunft, Springer Berlin Heidelberg,
2014, pp. 24-27.
16
17
16 J. Xuan, Z.-G. Zhang and W.-J. Xiao, Angew. Chem. Int.
Ed., 2015, 54, 15632-15641.
17 (a) L. Chu, C. Ohta, Z. Zuo and D. W. C. MacMillan, J.
Am. Chem. Soc., 2014, 136, 10886-10889; (b) D. W.
Manley, R. T. McBurney, P. Miller, R. F. Howe, S.
Rhydderch and J. C. Walton, J. Am. Chem. Soc., 2012,
134, 13580-13583; (c) G. Pratsch, G. L. Lackner and L. E.
Overman, J. Org. Chem., 2015, 80, 6025-6036; (d) Y.
Miyake, K. Nakajima and Y. Nishibayashi, J. Am. Chem.
Soc., 2012, 134, 3338-3341; (e) Y. Miyake, K. Nakajima
and Y. Nishibayashi, Chem. Comm., 2013, 49, 7854-
7856.
18 (a) G. Kachkovskyi, C. Faderl and O. Reiser, Adv.
Synth. Catal., 2013, 355, 2240-2248; (b) K. Okada, K.
Okamoto, N. Morita, K. Okubo and M. Oda, J. Am. Chem.
Soc., 1991, 113, 9401-9402.
19 K. Okada, K. Okubo, N. Morita and M. Oda,
Tetrahedron Lett., 1992, 33, 7377-7380.
2
3
4
5
3 E. Scott, F. Peter and J. Sanders, Appl. Microbiol.
Biotechnol., 2007, 75, 751-762.
4 H. Hunsdiecker and C. Hunsdiecker, Chem. Ber., 1942,
75, 291-297.
5 (a) D. H. R. Barton, D. Bridon, I. Fernandaz-Picot and
S. Z. Zard, Tetrahedron, 1987, 43, 2733-2740; (b) D. H.
R. Barton, D. Crich and W. B. Motherwell, J. Chem. Soc.,
Chem. Commun., 1983, 939-941.
18
6
7
6 (a) H. Kolbe, Liebigs Ann. Chem., 1849, 69, 257-294;
(b) H. Kolbe, Liebigs Ann. Chem., 1848, 64, 339-341.
7 (a) L. J. Gooßen, G. Deng and L. M. Levy, Science, 2006,
313, 662-664; (b) N. Rodriguez and L. J. Goossen, Chem.
Soc. Rev., 2011, 40, 5030-5048.
19
20
20 (a) M. A. Fox and M. T. Dulay, Chem. Rev., 1993, 93
,
341-357; (b) U. I. Gaya, Heterogeneous Photocatalysis
6 | J. Name., 2012, 00, 1-3
This journal is © The Royal Society of Chemistry 20xx
Please do not adjust margins