arylpurines exhibit antimycobacterial, antibacterial, and cy-
totoxic effects.5 6-Hetaryl-purine ribonucleosides exhibit
potent antiviral activity against HCV.6 6-Hydroxymethyl-9-
(ꢀ-D-ribofuranosyl)purine isolated from collybia maculata
was reported to possess antifungal, cytotoxic, antiviral
properties7 and could be also used as an adenosine deaminase
inhibitor.8 Very recently, Michal Hocek et al. reported a
series of purines bearing functionalized carbon substituents
in position 69 and many of them display significant cytostatic
activity.
The classical method for the synthesis of purines bearing
carbon substituents in position 6 was heterocyclization.10
Another method was radical addition.11 Currently, the most
frequently used methods were transition metal-catalyzed
cross-coupling reactions of 6-halopurines. In this respect, the
Suzuki-,12a Stille-,12b Negish-,12c and Sonogashira-,12d,e
coupling reaction have all been exploited successfully, and
various organometallic reagents12f,g,9f were involved. No
matter what the carbon substituents in position 6 are, these
methods seem to be versatile. For example, purin-6-yl
acetates were prepared previously in moderate yields by
heterocyclization of pyrimidines,10a arylation of malonates13
or ethyl acetoacetate14 with 6-halo or 6-tosyloxypurines
followed by decarboxylation or cleavage of acetoacetate.
However, these methods were laborious or hard to
reduplicate.9f Michal Hocek et al. synthesize these com-
pounds via Pd-catalyzed cross-couplings of 6-chloropurines
with the Reformatsky reagent in the presence of ligands;
6-methylpurine bases were prepared by the conventional and
tedious method of heterocyclization10b-d from 6-methyluracil
with low yield.
Another straightforward method for the synthesis of
6-methylpurine involves the displacement of a suitable
leaving group on the heterocycle by Wittig reagent15 which
usually requires rigorous reaction conditions (anhydrous,
nitrogen atm at -30 to -35 °C). Similarly, cross-coupling
reaction has been also widely applied16 to the synthesis of
6-methylpurine derivatives. Regioselective methylation reac-
tions17 of 2,6-dihalopurines with methylzinc bromide or
trimethylaluminum in the presence of Pd- or Fe- catalysts
were also investigated by Michal Hocek et al. Despite the
cross-coupling reaction provides a general and efficient
methodology for the synthesis of purines bearing carbon
substituents in position 6, the expensive catalyst and rigorous
reaction conditions often make this method less desirable.
In addition to the above-mentioned methods, a most promis-
ing route is the nucleophilic SNAr reaction of 6-alkanesulfo-
nyl- or 6-halopurines with some salts of C-acids14a,b,18 (such
as malonates or acetoacetates), which have been less
developed and usually were not reliably reproducible in
accordance with previous literature.
Based on our preliminary study on various nucleoside
analogues,19 herein, we reported a novel and efficient method
for the synthesis of purines bearing different carbon substit-
uents in position 6 through nucleophilic aromatic substitution
of 6-halopurines and ethyl acetoacetate without catalyst.
Initially, we investigated the SNAr-based reactions between
ethyl acetoacetate and 9-Bn-6-iodopurine.20 As indicated in
Table 1 (entries 1 and 2), our experiments were first
conducted by coupling 9-Bn-6-iodopurine (1 eq) with ethyl
acetoacetate (5 eq) in the absence of catalyst. This reaction
proceeded at 80 °C in DMSO in the presence of 7.5 equiv
of K2CO3 for 6 h to produce the desired (purin-6-yl)acetate
4a in 81% yield along with other unidentified products (entry
1). Later, the unidentified products were confirmed to be
arylation product 3a and 9-Bn-6-methylpurine 5a by HRMS,
1H NMR, and 13C NMR. The initial arylation product 3a
increased when the reaction time was shorten, indicating that
different products could be formed with different reaction
time (entry 2). The same results were obtained when 9-Bn-
(4) Brathe, A.; Andresen, G.; Gundersen, L.-L.; Malterud, K. E.; Rise,
F. Bioorg. Med. Chem. 2002, 10, 1581.
(5) (a) Bakkestuen, A. K.; Gundersen, L.-L.; Langli, G.; Liu, F.; Nolsøe,
J. M. J. Bioorg. Med. Chem. Lett. 2000, 10, 1207. (b) Andresen, G.;
Gundersen, L.-L.; Nissen-Meyer, J.; Rise, F.; Spilsberg, B. Bioorg. Med.
Chem. Lett. 2002, 12, 567. (c) Gundersen, L.-L.; Nissen-Meyer, J.; Spilsberg,
ˇ
D. J. Med. Chem. 2002, 45, 1383. (d) Hocek, M.; Silha´r, P.; Pohl, R. Collect.
Czech. Chem. Commun. 2006, 71, 1484.
(6) Hocek, M.; Nausˇ, P.; Pohl, R.; Votruba, I.; Furman, P. A.; Tharnish,
P. M.; Otto, M. J. J. Med. Chem. 2005, 48, 5869.
(7) Leonhardt, K.; Anke, T.; Hillen-Maske, E.; Steglich, W. Z. Natur-
forsch 1987, 42c, 420.
(8) (a) Evans, B.; Wolfenden, R. J. Am. Chem. Soc. 1970, 92, 4751. (b)
Wolfenden, R.; Wentworth, D. F.; Mitchell, G. N. Biochemistry 1977, 16,
5071.
ˇ
(9) (a) Silha´r, P.; Pohl, R.; Votruba, I.; Hocek, M. Org. Lett. 2004, 6,
ˇ
3225. (b) Silha´r, P.; Pohl, R.; Votruba, I.; Hocek, M. Collect. Czech. Chem.
ˇ
Commun. 2005, 70, 1669. (c) Silha´r, P.; Pohl, R.; Votruba, I.; Hocek, M.
ˇ
Org. Biomol. Chem. 2005, 3, 3001. (d) Silha´r, P.; Pohl, R.; Votruba, I.;
Hocek, M. Synthesis 2006, 1848. (e) Hockova´, D.; Hocek, M.; Dvoøa´kova´,
ˇ
H.; Votruba, I. Tetrahedron. 1999, 55, 11109. (f) Hasn´ık, Z.; Silha´r, P.;
(15) Taylor, E. C.; Martin, S. F. J. Am. Chem. Soc. 1974, 96, 8095.
(16) (a) Gundersen, L.-L.; Bakkestuen, A. K.; Aasen, A. J.; Øveras, H.;
Rise, F. Tetrahedron 1994, 50, 9743. (b) Hassan, A. E. A.; Abou-Elkair,
R. A. I.; Montgomery, J. A.; Secrist III, J. A. Nucleosides, Nucleotides,
Hocek, M. Tetrahedron Lett. 2007, 48, 5589. (g) Kucharˇ, M.; Pohl, R.;
Klepeta´øova´, B.; Hocek, M. Tetrahedron. 2008, 64, 10355. (h) Kucharˇ,
M.; Pohl, R.; Votruba, I.; Hocek, M. Eur. J. Org. Chem. 2006, 5083.
(10) (a) Montgomery, J. A.; Hewson, K. J. Org. Chem. 1965, 30, 1528.
(b) Gabriel, S.; Colman, J. Ber. Dtsch. Chem. Ges. 1901, 34, 1234. (c)
Prasad, R. N.; Noell, C. W.; Robins, R. K. J. Am. Chem. Soc. 1959, 81,
193. (d) Woenckhaus, C. W. Chem. Ber. 1964, 97, 2439.
`
Nucleic Acids 2000, 19, 1123. (c) Eesnek, M.; Hocek, M.; Holy´, A. Collect.
Czech. Chem. Commun. 2000, 65, 1357.
`
(17) (a) Eernˇa, I.; Pohl, R.; Klepeta´øova´, B.; Hocek, M. Org. Lett. 2006,
8, 5389. (b) Hocek, M.; Dvorˇa´kova´, H. J. Org. Chem. 2003, 68, 5773. (c)
ˇ
(11) (a) Nair, V.; Young, D. A. J. Org. Chem. 1984, 49, 4340. (b)
McKenzie, T. C.; Epstein, J. W. J. Org. Chem. 1982, 47, 4881. (c) Nair,
V.; Richardson, S. G.; Coffman, R. E. J. Org. Chem. 1982, 47, 4520.
(12) (a) Capek, P.; Vra´bel, M.; Hasn´ık, Z.; Pohl, R.; Hocek, M. Synthesis
2006, 3515. (b) Langli, G.; Gundersen, L.-L.; Rise, F. Tetrahedron 1996,
52, 5625. (c) Guthmann, H.; Koenemann, M.; Bach, T. Eur. J. Org. Chem.
2007, 632. (d) Firth, A. G.; Fairlamb, I. J. S.; Darley, K.; Baumann, C. G.
Tetrahedron Lett. 2006, 47, 3529. (e) Andra´s, N.; Andra´s, K. Tetrahedron
Lett. 2008, 49, 3782. (f) Hocek, M. Eur. J. Org. Chem. 2003, 245. (g)
Agrofoglio, L. A.; Gillaizeau, I.; Saito, Y. Chem. ReV. 2003, 103, 1875.
(13) Odijk, W. M.; Koomen, G. J. Tetrahedron 1985, 41, 1893.
(14) (a) Sakata, S.; Yonei, S.; Yoshino, H. Chem. Pharm. Bull. 1982,
30, 2583. (b) Hamamichi, N.; Miyasaka, T. J. Heterocycl. Chem. 1990, 27,
2011.
Hocek, M.; Pohl, R.; Cı´sarˇova´, I. Eur. J. Org. Chem. 2005, 3026. (d) Silha´r,
P.; Pohl, R.; Votruba, I.; Klepeta´rˇova´, B; Hocek, M. Collect. Czech. Chem.
Commun. 2006, 71, 788.
(18) (a) Yamane, A; Matsuda, A; Ueda, T. Chem. Pharm. Bull. 1980,
28, 150. (b) Hamamichi, N; Miyasaka, T. J. Heterocycl. Chem. 1990, 27,
835. (c) Hamamichi, N.; Miyasaka, T. Chem. Pharm. Bull 1990, 38, 3253.
(d) Hamamichi, N.; Miyasaka, T. Chem. Pharm. Bull. 1992, 40, 843. (e)
Klemm, L. H; Johnstone, S; Tran, L. K. J. Heterocycl. Chem. 1989, 26,
1599. (f) Hamamichi, N.; Miyasaka, T. J. Org. Chem. 1994, 59, 1525
.
(19) (a) Qu, G. R.; Xia, R.; Yang, X. N.; Li, J. G.; Wang, D. C.; Guo,
H. M. J. Org. Chem. 2008, 73, 2416. (b) Qu, G. R.; Zhao, L.; Wang, D. C.;
Wu, J.; Guo, H. M. Green Chem. 2008, 10, 287. (c) Qu, G. R.; Zhang,
Z.-G.; Geng, M. W.; Xia, R.; Zhao, L.; Guo, H. M. Synlett 2007, 5, 721.
(20) McKenzie, T. C.; Epstein, J. W. J. Org. Chem. 1982, 47, 4881.
1746
Org. Lett., Vol. 11, No. 8, 2009