Edge Article
Chemical Science
data sets generated from complex substrates to enable a holistic 10 R. D. Taylor, M. MacCoss and A. D. G. Lawson, J. Med. Chem.,
understanding of structure–reactivity relationships, from local 2014, 57, 5845.
steric and electronic effects at reaction centers to aggregate 11 (a) M. L. Crawley and B. M. Trost, Applications of transition
physicochemical properties arising from the entire substrate
structure. Efforts in our labs towards further validating this
chemoinformatics-enabled approach to reaction evaluation and
optimization are underway. We eagerly anticipate that other
metal catalysis in drug discovery and development: an
industrial perspective, Wiley, Hoboken, 2012; (b)
¨
D. G. Brown and J. Bostrom, J. Med. Chem., 2015, 58, DOI:
10.1021/acs.jmedchem.5b01409.
laboratories will begin to adopt and expand upon these 12 For reviews on the Suzuki–Miyaura coupling, see: (a)
methods, and in doing so help drive the eld to develop
synthetic transformations with ever more powerful applications
in complex molecule synthesis.32
N. Miyaura and A. Suzuki, Chem. Rev., 1995, 95, 2457; (b)
A. Suzuki, J. Organomet. Chem., 1999, 576, 147; (c)
F. Bellina, A. Carpita and R. Rossi, Synthesis, 2004, 2419;
(d) C. Valente and M. G. Organ, in Boronic Acids:
Preparation and Applications in Organic Synthesis, Medicine
and Materials, ed. D. G. Hall, Wiley, Chichester, 2nd edn,
2011.
Acknowledgements
We thank Meir Glick and Eric Fischer for helpful discussions,
Mikhail Reibarkh for assistance with NMR experiments and 13 While many Suzuki–Miyaura reactions have been reported in
Natalya Pissarnitski for assistance in compound purication.
the literature for complex drug-like structures or natural
products, there is no standardizedreactivity data for these
compounds, and in many cases no attempt is made to
determine the actual yields of reactions.
Notes and references
1 A. Nadin, C. Hattotuwagama and I. Churcher, Angew. Chem., 14 (a) C. S. Shultz and S. W. Krska, Acc. Chem. Res., 2007, 40,
Int. Ed., 2012, 51, 1114.
2 For related approaches, see: (a) K. Zhang, S. El Damaty and
1320; (b) S. D. Dreher, P. G. Dormer, D. L. Sandrock and
G. A. Molander, J. Am. Chem. Soc., 2008, 130, 9257.
R. Fasan, J. Am. Chem. Soc., 2011, 133, 3242; (b) E. N. Bess, 15 For a typical synthesis of an investigational drug compound
A. J. Bischoff and M. S. Sigman, PNAS, 2014, 111, 14698.
3 (a) K. D. Collins and F. Glorius, Nat. Chem., 2013, 5, 597; (b)
K. D. Collins and F. Glorius, Acc. Chem. Res., 2015, 48, 619; (c)
in a medicinal chemistry project, a solution yield of >20%
can reliably provide a usable amount of material for initial
biochemical testing aer purication.
K. D. Collins and F. Glorius, Tetrahedron, 2013, 69, 7817; (d) 16 R. Rossi, F. Bellina, M. Lessi, C. Manzini, G. Marianetti and
K. D. Collins, A. Ruhling, F. Lied and F. Glorius, Chem. Eur. J., L. A. Perego, Curr. Org. Chem., 2015, 19, 1302.
2014, 20, 3800; (e) K. D. Collins and F. Glorius, Nat. Protoc., 17 Selected Suzuki–Miyaura coupling conditions were repeated
2014, 9, 1348.
on a larger scale to conrm product structures and to obtain
UV response factors for solution yield determination. See
ESI† for more details.
4 J. L. Medina-Franco, K. Martinez-Mayorga, M. A. Giulianotti,
R. A. Houghten and C. Pinilla, Curr. Comput.–Aided Drug
Des., 2008, 4, 322.
5 A. A. Shelat and R. K. Guy, Curr. Opin. Chem. Biol., 2007, 11,
244.
18 The XPhos G2 precatalyst has been reported to give good
results in Suzuki–Miyaura couplings of arylboronic acids
with nitrogen-rich, unprotected heterocycles at elevated
temperature: see ref. 9g.
6 In order to generate a PCA visualization that was consistent
across each analysis, we performed a PCA on all compounds, 19 (a) I. A. I. Mkhalid, J. H. Barnard, T. B. Marder, J. M. Murphy
although in many of our gures only a subset of compounds
is depicted.
7 We visualize PC3 and PC4 in Fig. S1 in the ESI† (78%
cumulative variance explained).
8 N. Miyaura, T. Yanagi and A. Suzuki, Synth. Commun., 1981,
11, 513.
and J. F. Hartwig, Chem. Rev., 2010, 110, 890; (b)
J. F. Hartwig, Chem. Soc. Rev., 2011, 40, 1992; (c)
J. F. Hartwig, Acc. Chem. Res., 2012, 45, 864; (d)
S. M. Preshlock, B. Ghaffari, P. E. Maligres, S. W. Krska,
R. E. Maleczka and M. R. Smith, J. Am. Chem. Soc., 2013,
135, 7572.
9 (a) A. Zapf, R. Jackstell, F. Rataboul, T. Riermeier, 20 (a) M. A. Larsen and J. F. Hartwig, J. Am. Chem. Soc., 2014,
A. Monsees, C. Fuhrmann, N. Shaikh, U. Dingerdissen and
M. Beller, Chem. Commun., 2004, 38; (b) N. Kudo,
M. Perseghini and G. C. Fu, Angew. Chem., Int. Ed., 2006,
136, 4287; (b) T. Cernak, K. D. Dykstra, S. Tyagarajan,
P. Vachal and S. W. Krska, Chem. Soc. Rev., DOI: 10.1039/
c5cs00628g.
45, 1282; (c) C. J. O'Brien, E. A. B. Kantchev, C. Valente, 21 (a) C. W. Liskey, X. Liao and J. F. Hartwig, J. Am. Chem. Soc.,
C. N. Hadei, G. A. Chass, A. Lough, A. C. Hopkinson and
M. G. Organ, Chem.–Eur. J., 2006, 12, 4743–4748; (d)
K. Billingsley and S. L. Buchwald, J. Am. Chem. Soc., 2007,
129, 3358; (e) T. Kinzel, Y. Zhang and S. L. Buchwald, J.
Am. Chem. Soc., 2010, 132, 14073; (f) D. W. Robbins and
2010, 132, 11389; (b) G. Zhang, L. Zhang, M. Hu and
J. Cheng, Adv. Synth. Catal., 2011, 353, 291; (c)
P. Anbarasan, J. Neumann and M. Beller, Angew. Chem.,
Int. Ed., 2011, 50, 519; (d) J. Kim, J. Choi, K. Shin and
S. Chang, J. Am. Chem. Soc., 2012, 134, 2528; (e) Y. Luo,
Q. Wen, Z. Wu, J. Jin, P. Lu and Y. Wang, Tetrahedron,
2013, 69, 8400. For a related protocol which is reported
¨
J. F. Hartwig, Org. Lett., 2012, 14, 4266; (g) M. A. Dufert,
K. L. Billingsley and S. L. Buchwald, J. Am. Chem. Soc.,
2013, 135, 12877.
This journal is © The Royal Society of Chemistry 2016
Chem. Sci.