Q. Wang et al. / Journal of Organometallic Chemistry 694 (2009) 691–696
695
Table 4
further efforts will focus on the optimization of the catalyst archi-
tecture to improve the enantiomeric excess for hydroamination/
cyclization, and on the exploration of these catalysts towards other
types of reactions.
Polymerization of rac-lactide catalyzed by chiral organolanthanide amides 3 and 4.a
O
O
O
O
O
O
complex
O
O
O
m
O
+
O n
O
O
O
Acknowledgements
O
O
This work was supported by the National Natural Science Foun-
dation of China (20602003), and Beijing Municipal Commission of
Education.
rac-Lactide
Isotactic Polylactide
b
b
c
Entry Complex Solvent
Conversion (%) Mn (kg/mol) Mw/Mn
Pm (%)
1
2
3
4
3
4
3
4
Toluene 100
72.9
66.2
59.3
54.2
1.21
1.28
1.26
1.23
68
58
59
54
Appendix A. Supplementary material
Toluene
THF
90
88
87
CCDC 692309 and 692310 contain the supplementary crystallo-
graphic data for 3 and 4. These data can be obtained free of charge
from The Cambridge Crystallographic Data Centre via www.ccdc.
this article can be found, in the online version, at doi:10.1016/
THF
a
Conditions: 20 °C, precat./LA (mol/mol) = 1/1000; polymerization time, 1 h;
solvent, 5 mL; [LA] = 1.0 mol/L.
b
Measured by GPC (using polystyrene standards in THF).
Pm is the probability of meso linkages between monomer units and is deter-
c
mined from the methine region of the homonuclear decoupling 1H NMR spectrum
in CDCl3 at 25 °C.
References
[1] H.C. Aspinall, Chem. Rev. 102 (2002) 1807–1850.
[2] F.T. Edelmann, D.M.M. Freckmann, H. Schumann, Chem. Rev. 102 (2002) 1851–
1896.
[3] O. Dechy-Cabaret, B. Martin-Vaca, D. Bourissou, Chem. Rev. 104 (2004) 6147–
6176.
tions examined. Molecular weights and polydispersities of the
polymers produced ranged from 54.2 to 72.9 kg molꢁ1 and 1.21
to 1.28, respectively. The catalytic activities of 3 and 4 resemble
that of [2-(2,6-iPr2C6H3N@CH)C4H3N]2Y(CH2SiMe3)(THF)2 [48],
while the microstructure of the resulting polylactides are similar
to those initiated by [(S)-2-MeO-C20H12-20-(NCHC4H3N)]2LnN-
(SiMe3)2}2 [43].
[4] J. Gromada, J.-F. Carpentier, A. Mortreux, Coord. Chem. Rev. 248 (2004) 397–
410.
[5] W.E. Piers, D.J.H. Emslie, Coord. Chem. Rev. 233–234 (2002) 131–155.
[6] P.W. Roesky, T.E. Müller, Angew. Chem., Int. Ed. 42 (2003) 2708–2710.
[7] S. Hong, T.J. Marks, Acc. Chem. Res. 37 (2004) 673–686.
[8] K.C. Hultzsch, Org. Biomol. Chem. 3 (2005) 1819–1824.
[9] K.C. Hultzsch, Adv. Synth. Catal. 347 (2005) 367–391.
[10] K.K. Hii, Pure Appl. Chem. 78 (2006) 341–349.
4. Conclusions
[11] I. Aillaud, J. Collin, J. Hannedouche, E. Schulz, Dalton Trans. (2007) 5105–5118.
[12] D.V. Gribkov, K.C. Hultzsch, F. Hampel, J. Am. Chem. Soc. 128 (2006) 3748–
3759.
[13] S. Hong, S. Tian, M.V. Metz, T.J. Marks, J. Am. Chem. Soc. 125 (2003) 14768–
14783.
In conclusion, two new binuclear lanthanide amides have been
readily prepared from the reactions between Ln[N(SiMe3)2]3 and
chiral NNO ligands, (S)-2-(pyridin-2-ylmethylamino)-20-hydroxy-
1,10-binaphthyl (1H2) and (S)-5,50,6,60,7,70,8,80-octahydro-2-(pyr-
rol-2-ylmethyleneamino)-20-hydroxy-1,10-binaphthyl (2H2). They
have significant catalytic activity in the asymmetric hydroamina-
tion/cyclization of aminoalkenes, as well as the ring-opening poly-
merization of rac-lactide, although the overall performances of
these catalytic processes are plagued by the poor degree of control
of the polymerization and the moderate enantioselectivity of the
formed amines, respectively.
When changes are made from pyrrol-2-ylmethyleneamino
group to pyridin-2-ylmethylamino group, and from binaphthyl to
H8-binaphthyl, the ligands (S)-2-(pyrrol-2-ylmethyleneamino)-20-
hydroxy-1,10-binaphthyl [41,42], (S)-2-(pyridin-2-ylmethylami-
no)-20-hydroxy-1,10-binaphthyl (1H2), and (S)-5,50,6,60,7,70,8,
80-octahydro-2-(pyrrol-2-ylmethyleneamino)-20-hydroxy-1,10-
binaphthyl (2H2) exhibit different reactivity patterns. For example,
reaction of (S)-2-(pyrrol-2-ylmethyleneamino)-20-hydroxy-1,10-
binaphthyl or 1H2 with Y[N(SiMe3)2]3 gives the binuclear com-
plex {[(S)-2-O-C20H12-20-(NCHC4H3N)]YN(SiMe3)2}2 [41] or
{(1)YN(SiMe3)2}2 (3), respectively, while reaction of 2H2 with
Ln[N(SiMe3)2]3 (Ln = Sm, Y) affords a binuclear complex {(2)SmN-
(SiMe3)2}2 (4) or a trinuclear complex {(2)2Y}2YN(SiMe3)2 [42],
presumably due to the steric effect of the ligand coupled with the
size effect of the lanthanide ions [49]. The binuclear complexes 3
and 4 are more effective catalysts for the enantioselective hydro-
amination/cyclization reaction than the pyrrolate binuclear com-
plexes {[(S)-2-O-C20H12-20-(NCHC4H3N)]LnN(SiMe3)2}2 (Ln = Y, Yb)
[42], but less than those initiated by trinuclear complexes
{(2)2Ln}2LnN(SiMe3)2 (Ln = Y, Yb) [42] presumably due to the steric
effect of the complex coupled with the size effect of the lanthanide
ions [49]. We are currently concentrating on this transformation,
[14] P.N. O’Shaughnessy, P.D. Knight, C. Morton, K.M. Gillespie, P. Scott, Chem.
Commun. (2003) 1770–1771.
[15] D.V. Gribkov, K.C. Hultzsch, Chem. Commun. (2004) 730–731.
[16] D.V. Gribkov, F. Hampel, K.C. Hultzsch, Eur. J. Inorg. Chem. (2004) 4091–4101.
[17] D.V. Gribkov, K.C. Hultzsch, F. Hampel, Chem.-Eur. J. 9 (2003) 4796–4810.
[18] X. Yu, T.J. Marks, Organometallics 26 (2007) 365–376.
[19] J. Collin, J.C. Daran, O. Jacquet, E. Schulz, A. Trifonov, Chem.-Eur. J. 11 (2005)
3455–3462.
[20] J. Collin, J.C. Daran, E. Schulz, A. Trifonov, Chem. Commun. (2003) 3048–3049.
[21] N. Meyer, A. Zulys, P.W. Roesky, Organometallics 25 (2006) 4179–4182.
[22] D. Riegert, J. Collin, J.C. Daran, T. Fillebeen, E. Schulz, D. Lyubov, G. Fukin, A.
Trifonov, Eur. J. Inorg. Chem. (2007) 1159–1168.
[23] I. Aillaud, J. Collin, C. Duhayon, R. Guillot, D. Lyubov, E. Schulz, A. Trifonov,
Chem.-Eur. J. 14 (2008) 2189–2200.
[24] L. Xiang, H. Song, G. Zi, Eur. J. Inorg. Chem. (2008) 1135–1140.
[25] L. Xiang, Q. Wang, H. Song, G. Zi, Organometallics 26 (2007) 5323–5329.
[26] G. Zi, L. Xiang, H. Song, Organometallics 27 (2008) 1242–1246.
[27] J.Y. Kim, T. Livinghouse, Org. Lett. 7 (2005) 1737–1739.
[28] D. Riegert, J. Collin, A. Meddour, E. Schulz, A. Trifonov, J. Org. Chem. 71 (2006)
2514–2517.
ˇ
´
ˇ
ˇ
[29] P. Kocovsky, Š. Vykocil, M. Smrcina, Chem. Rev. 103 (2003) 3213–3246.
[30] K. Ding, X. Li, B. Ji, H. Guo, M. Kitamura, Curr. Org. Synth. 2 (2005) 499–545.
[31] K. Ding, H. Guo, X. Li, Y. Yuan, Y. Wang, Top. Catal. 35 (2005) 105–116.
[32] H. Brunner, F. Henning, Monatsh. Chem. 135 (2004) 885–897.
[33] H. Brunner, F. Henning, M. Weber, M. Zabel, D. Carmona, F.J. Lahoz, Synthesis
(2003) 1091–1099.
[34] H. Brunner, F. Henning, M. Weber, Tetrahedron: Asymmetr. 13 (2002) 37–42.
[35] M. Shibasaki, N. Yoshikawa, Chem. Rev. 102 (2002) 2187–2210.
[36] S. Kobayashi, M. Sugiura, H. Kitagawa, W.L. Lam, Chem. Rev. 102 (2002) 2227–
2302.
[37] C.-M. Che, J.-S. Huang, Coord. Chem. Rev. 242 (2003) 97–113.
[38] P.D. Knight, P. Scott, Coord. Chem. Rev. 242 (2003) 125–143.
[39] J.M. Brunel, Chem. Rev. 105 (2005) 857–898.
[40] S.G. Telfer, R. Kuroda, Coord. Chem. Rev. 242 (2003) 33–46.
[41] Q. Wang, L. Xiang, G. Zi, J. Organomet. Chem. 693 (2008) 68–76.
[42] Q. Wang, L. Xiang, H. Song, G. Zi, Inorg. Chem. 47 (2008) 4319–4328.
[43] G. Zi, Q. Wang, L. Xiang, H. Song, Dalton Trans. (2008) 5930–5944.
[44] D.C. Bradley, J.S. Ghotra, F. Alan Hart, J. Chem. Soc., Dalton Trans. (1973) 1021–
1023.