Page 5 of 8
Journal of the American Chemical Society
ionization event of allyl fluorides.12, 16 Thus, a double in-
version mechanism should be involved in our methodol-
ogy to deliver an overall retention.
Drugs Introduced to the Market in the Last Decade (2001–2011).
Chem. Rev. 2014, 114, 2432; (f) Yang, X.; Wu, T.; Phipps, R. J.;
Toste, F. D., Advances in Catalytic Enantioselective Fluorination,
Mono-, Di-, and Trifluoromethylation, and Trifluoromethylthiolation
Reactions. Chem. Rev. 2015, 115, 826.
1
2
3
4
5
6
7
8
9
In summary, we report the first palladium-catalyzed
asymmetric allylic trifluoromethylation reaction empow-
ered by a unique ligand class. The role of allyl fluorides
as a superior precursor for generation of p-allyl com-
plexes suggests a synergistic interplay of the fluoride
leaving group and TMS–CF3 in ionization and nucleo-
philic activation. This methodology gives access to vari-
ous fluoroalkylated carbo- and heterocycles with high
functional group tolerance and excellent enantioselectiv-
ities. Our mechanistic studies indicate an overall reten-
tion of the stereochemistry during this unprecedented tri-
fluoromethylation reaction.
2.
3.
Zhu, Y.; Han, J.; Wang, J.; Shibata, N.; Sodeoka, M.; Soloshonok, V.
A.; Coelho, J. A. S.; Toste, F. D., Modern Approaches for
Asymmetric Construction of Carbon–Fluorine Quaternary
Stereogenic Centers: Synthetic Challenges and Pharmaceutical
Needs. Chem. Rev. 2018, 118, 3887.
(a) Umemoto, T., Electrophilic Perfluoroalkylating Agents. Chem.
Rev. 1996, 96, 1757; (b) Billard, T.; Langlois, B. R., How to Reach
Stereogenic Trifluoromethylated Carbon? En Route to the “Grail” of
the Asymmetric Trifluoromethylation Reaction. Eur. J. Org. Chem.
2007, 2007, 891; (c) Furuya, T.; Kamlet, A. S.; Ritter, T., Catalysis
for fluorination and trifluoromethylation. Nature 2011, 473, 470; (d)
Fujiwara, Y.; Dixon, J. A.; Rodriguez, R. A.; Baxter, R. D.; Dixon,
D. D.; Collins, M. R.; Blackmond, D. G.; Baran, P. S., A New
Reagent for Direct Difluoromethylation. J. Am. Chem. Soc. 2012,
134, 1494; (e) Alonso, C.; Martínez de Marigorta, E.; Rubiales, G.;
Palacios, F., Carbon Trifluoromethylation Reactions of Hydrocarbon
Derivatives and Heteroarenes. Chem. Rev. 2015, 115, 1847; (f)
Tauber, J.; Schwartz, L. A.; Krische, M. J., Enantioselective
Synthesis of Chiral Organofluorine Compounds: Alcohol-Mediated
Hydrogen Transfer for Catalytic Carbonyl Reductive Coupling.
Organic Process Research & Development 2019, 23, 730.
(a) Ball, N. D.; Kampf, J. W.; Sanford, M. S., Aryl−CF3 Bond-
Forming Reductive Elimination from Palladium(IV). J. Am. Chem.
Soc. 2010, 132, 2878; (b) Cho, E. J.; Senecal, T. D.; Kinzel, T.;
Zhang, Y.; Watson, D. A.; Buchwald, S. L., The Palladium-Catalyzed
Trifluoromethylation of Aryl Chlorides. Science 2010, 328, 1679; (c)
Ball, N. D.; Gary, J. B.; Ye, Y.; Sanford, M. S., Mechanistic and
Computational Studies of Oxidatively-Induced Aryl−CF3 Bond-
Formation at Pd: Rational Design of Room Temperature Aryl
Trifluoromethylation. J. Am. Chem. Soc. 2011, 133, 7577; (d)
Morimoto, H.; Tsubogo, T.; Litvinas, N. D.; Hartwig, J. F., A Broadly
Applicable Copper Reagent for Trifluoromethylations and
Perfluoroalkylations of Aryl Iodides and Bromides. Angew. Chem.
Int. Ed. 2011, 50, 3793; (e) Nagib, D. A.; MacMillan, D. W. C.,
Trifluoromethylation of arenes and heteroarenes by means of
photoredox catalysis. Nature 2011, 480, 224; (f) Ge, S.; Arlow, S. I.;
Mormino, M. G.; Hartwig, J. F., Pd-Catalyzed α-Arylation of
Trimethylsilyl Enolates of α,α-Difluoroacetamides. J. Am. Chem.
Soc. 2014, 136, 14401; (g) Feng, Z.; Xiao, Y.-L.; Zhang, X.,
Transition-Metal (Cu, Pd, Ni)-Catalyzed Difluoroalkylation via
Cross-Coupling with Difluoroalkyl Halides. Acc. Chem. Res. 2018,
51, 2264; (h) Le, C.; Chen, T. Q.; Liang, T.; Zhang, P.; MacMillan,
D. W. C., A radical approach to the copper oxidative addition
problem: Trifluoromethylation of bromoarenes. Science 2018, 360,
1010.
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
ASSOCIATED CONTENT
The Supporting Information is available free of charge on
the ACS Publications website.
Experimental procedures, analytical data (1H-NMR, 13C-
NMR, MS, IR, and [α]D) for all new compounds, crystal
structure data (PDF )
4.
AUTHOR INFORMATION
Corresponding Author
*E-mail:
ORCID
Barry M. Trost: 0000-0001-7369-9121
Hadi Gholami: 0000-0001-6520-0845
Daniel Zell: 0000-0002-2241-6301
ACKNOWLEDGEMENTS
We would like to thank the Tamaki Foundation, and
Chugai Pharmaceuticals, for their generous, partial fund-
ing support for our program. We thank the DFG Research
Fellowship (D. Z.). We would link to thank Dr. Stephen
R. Lynch (Stanford University) for assistance with nu-
clear magnetic resonance analysis. The crystal structure
analysis of this work was performed at the Stanford Nano
Shared Facilities (SNSF)/Stanford Nanofabrication Fa-
cility (SNF), supported by the National Science Founda-
tion under award ECCS-1542152.
5.
6.
Prakash, G. K. S.; Krishnamurti, R.; Olah, G. A., Synthetic methods
and reactions. 141. Fluoride-induced trifluoromethylation of carbonyl
compounds with trifluoromethyltrimethylsilane (TMS-CF3).
trifluoromethide equivalent. J. Am. Chem. Soc. 1989, 111, 393.
A
(a) Iseki, K.; Nagai, T.; Kobayashi, Y., Asymmetric
trifluoromethylation of aldehydes and ketones with
trifluoromethyltrimethylsilane catalyzed by chiral quaternary
ammonium fluorides. Tetrahedron Lett. 1994, 35, 3137; (b) Kuroki,
Y.; Iseki, K., A chiral triaminosulfonium salt: design and application
to catalytic asymmetric synthesis. Tetrahedron Lett. 1999, 40, 8231;
(c) Caron, S.; Do, N. M.; Arpin, P.; Larivée, A., Enantioselective
Addition of a Trifluoromethyl Anion to Aryl Ketones and Aldehydes.
Synthesis 2003, 2003, 1693; (d) Kawai, H.; Kusuda, A.; Nakamura,
S.; Shiro, M.; Shibata, N., Catalytic Enantioselective
REFERENCES
1.
(a) Böhm, H.-J.; Banner, D.; Bendels, S.; Kansy, M.; Kuhn, B.;
Müller, K.; Obst-Sander, U.; Stahl, M., Fluorine in Medicinal
Chemistry. ChemBioChem 2004, 5, 637; (b) Müller, K.; Faeh, C.;
Diederich, F., Fluorine in Pharmaceuticals: Looking Beyond
Intuition. Science 2007, 317, 1881; (c) Hagmann, W. K., The Many
Roles for Fluorine in Medicinal Chemistry. J. Med. Chem. 2008, 51,
4359; (d) Liang, T.; Neumann, C. N.; Ritter, T., Introduction of
Fluorine and Fluorine-Containing Functional Groups. Angew. Chem.
Int. Ed. 2013, 52, 8214; (e) Wang, J.; Sánchez-Roselló, M.; Aceña, J.
L.; del Pozo, C.; Sorochinsky, A. E.; Fustero, S.; Soloshonok, V. A.;
Liu, H., Fluorine in Pharmaceutical Industry: Fluorine-Containing
Trifluoromethylation
of
Azomethine
Imines
with
Trimethyl(trifluoromethyl)silane. Angew. Chem. Int. Ed. 2009, 48,
6324; (e) Kawai, H.; Tachi, K.; Tokunaga, E.; Shiro, M.; Shibata, N.,
Cinchona Alkaloid-Catalyzed Asymmetric Trifluoromethylation of
Alkynyl Ketones with Trimethylsilyl Trifluoromethane. Org. Lett.
2010, 12, 5104.
(a) Pedersen, O. S.; Pedersen, E. B., The Flourishing Syntheses of
Non-Nucleoside Reverse Transcriptase Inhibitors. Synthesis 2000,
2000, 479; (b) Ren, J.; Milton, J.; Weaver, K. L.; Short, S. A.; Stuart,
D. I.; Stammers, D. K., Structural Basis for the Resilience of
7.
5
ACS Paragon Plus Environment