2360
Organometallics 2009, 28, 2360–2362
A 14-VE Platinum(0) Phosphabarrelene Complex in the
Hydrosilylation of Alkynes
Matthias Blug, Xavier-Frederic Le Goff, Nicolas Me´zailles, and Pascal Le Floch*
Laboratoire “He´te´roe´le´ments et Coordination”, Ecole Polytechnique, CNRS, 91128 Palaiseau Ce´dex, France
ReceiVed January 28, 2009
Scheme 1. Pt-Catalyzed Hydrosylilation of Alkynes using
Ligand 1
Summary: A bulky phosphabarrelene ligand is used in the
platinum-catalyzed hydrosilylation of alkynes. High regiose-
lectiVities were achieVed under mild conditions from an in situ
formed catalyst at low catalyst loadings. Furthermore, a rare
14-VE PtL2 complex was isolated, which equally proVed to be
a highly reactiVe catalyst precursor.
Sterically crowded tertiary phosphines have found important
applications in the kinetic stabilization of unsaturated low-valent
transition-metal complexes.1-3 Some of these complexes proved
to be among the most active catalysts in organic transformations
of synthetic relevance such as the Pd-catalyzed cross-coupling
reactions.2,4 In some instances, the unsaturation of the metal
coordination sphere could be used for the stabilization of reactive
species.5 Controlling the steric environment of tertiary phos-
phines thus allows us to finely tune the degree of coordinative
unsaturation of a metal center and in turn its reactive behavior,
yet this remains an important challenge. In most cases, bulky
phosphines are available through multistep synthesis from
halogenated derivatives or through metal-catalyzed phosphina-
tion or phosphinylation processes.6,7 In this perspective, low-
coordinated phosphorus species featuring either Ct P or CdP
bonds, which exhibit reactivity close to that of their carbon
counterparts, were shown to behave as efficient precursors of
cyclic phosphines and phosphorus-containing cage compounds.8
Among these, 1-phosphabarrelenes, which are easily prepared
through [4 + 2] classical Diels-Alder reactions between
phosphinines and alkynes, have recently appeared as a very
promising new class of ligands in catalysis for several reasons.9
First, these bicyclic phosphines are well-suited for the stabiliza-
tion of low-valent transition-metal complexes, as they combine
rigidity and a modular steric crowding. Second, they possess
electronic properties significantly different from those of bulky
trialkylphosphines, as they are in fact good π-acceptor ligands.10
Herein we wish to report on the successful use of one of these
phosphabarrelene ligands in the platinum(0)-catalyzed hydro-
silylation of alkynes.11 We also show that the ligand allows the
stabilization of a rare 14-electron Pt(0) species.
* To whom correspondence should be addressed. Tel: +33 1 69 33 44
01. Fax: +33 1 69 33 44 40. E-mail: lefloch@poly.polytechnique.fr.
(1) (a) Immirzi, A.; Musco, A. J. Chem. Soc., Chem. Commun. 1974,
400–401. (b) Reid, S. M.; Boyle, R. C.; Mague, J. T.; Fink, M. J. J. Am.
Chem. Soc. 2003, 125, 7816–7817. (c) Paul, F.; Patt, J.; Hartwig, J. F. J. Am.
Chem. Soc. 1994, 116, 5969–5970. (d) Mann, G.; Incarvito, C.; Rheingold,
A. L.; Hartwig, J. F. J. Am. Chem. Soc. 1999, 121, 3224–3225. (e) Sergeev,
A. G.; Zapf, A.; Spannenberg, A.; Beller, M. Organometallics 2008, 27,
297–300. (f) Chaplin, A. B.; Poblador-Bahamonde, A. I.; Sparkes, H. A.;
Howard, J. A. K.; Macgregor, S. A.; Weller, A. S. Chem. Commun. 2009,
244–246.
(2) Barder, T. E.; Walker, S. D.; Martinelli, J. R.; Buchwald, S. L. J. Am.
Chem. Soc. 2005, 127, 4685–4696.
(3) (a) Immirzi, A.; Musco, A.; Zambelli, P.; Carturan, G. Inorg. Chim.
Acta 1975, 13, L13-L14. (b) Otsuka, S.; Yoshida, T.; Matsumoto, M.;
Nakatsu, K. J. Am. Chem. Soc. 1976, 98, 5850–5858.
(4) (a) Littke, A. F.; Dai, C. Y.; Fu, G. C. J. Am. Chem. Soc. 2000,
122, 4020–4028. (b) Wolfe, J. P.; Buchwald, S. L. Angew. Chem., Int. Ed.
1999, 38, 2413–2416. (c) Wolfe, J. P.; Singer, R. A.; Yang, B. H.; Buchwald,
S. L. J. Am. Chem. Soc. 1999, 121, 9550–9561. (d) Zapf, A.; Jackstell, R.;
Rataboul, F.; Riermeier, T.; Monsees, A.; Fuhrmann, C.; Shaikh, N.;
Dingerdissen, U.; Beller, M. Chem. Commun. 2004, 1340–1340. (e) Kataoka,
N.; Shelby, Q.; Stambuli, J. P.; Hartwig, J. F. J. Org. Chem. 2002, 67,
5553–5566.
(5) (a) Braunschweig, H.; Brenner, P.; Mu¨ller, A.; Radacki, K.; Rais,
D.; Uttinger, K. Chem. Eur. J. 2007, 13, 7171–7176. (b) Braunschweig,
H.; Radacki, K.; Uttinger, K. Chem. Eur. J. 2008, 14, 7858–7866. (c)
Braunschweig, H.; Radacki, K.; Uttinger, K. Angew. Chem., Int. Ed. 2007,
46, 3979–3982. (d) Braunschweig, H.; Burzler, M.; Kupfer, T.; Radacki,
K.; Seeler, F. Angew. Chem., Int. Ed. 2007, 46, 7785–7787.
(6) (a) Hayashi, T. Acc. Chem. Res. 2000, 33, 354–362. (b) Kocovsky,
P.; Vyskocil, S.; Smrcina, M. Chem. ReV. 2003, 103, 3213–3245. (c) Murata,
M.; Buchwald, S. L. Tetrahedron 2004, 60, 7397–7403. (d) Van Allen, D.;
Venkataraman, D. J. Org. Chem. 2003, 68, 4590–4593. (e) Korff, C.;
Helmchen, G. Chem. Commun. 2004, 530–531.
(7) (a) Kobatake, T.; Kondoh, A.; Yoshida, S.; Yorimitsu, H.; Oshima,
K. Chem. Asian J. 2008, 3, 1613–1619. (b) Kondoh, A.; Yorimitsu, H.;
Oshima, K. J. Am. Chem. Soc. 2007, 129, 6996.
All our experiments were carried out with ligand 1, which is
easily obtained through the [4 + 2] cycloaddition of in situ
generated benzyne with the 2,6-bis(trimethylsilyl)-3,5-dimeth-
(8) (a) Le Floch, P. Coord. Chem. ReV. 2006, 250, 627–681. (b) Mathey,
F. Phosphorus-Carbon Heterocyclic Chemistry: The Rise of a New Domain;
Pergamon: New York, 2001. (c) Mathey, F. Angew. Chem., Int. Ed. 2003,
42, 1578–1604.
(9) (a) Ma¨rkl, G.; Lieb, F.; Martin, C. Tetrahedron Lett. 1971, 1249.
(b) Breit, B.; Fuchs, E. Chem. Commun. 2004, 694–695. (c) Breit, B.; Fuchs,
E. Synthesis 2006, 2121–2128. (d) Fuchs, E.; Keller, M.; Breit, B. Chem.
Eur. J. 2006, 12, 6930–6939. (e) Piechaczyk, O.; Doux, M.; Ricard, L.; Le
Floch, P. Organometallics 2005, 24, 1204–1213. (f) Blug, M.; Guibert, C.;
Le Goff, X. F.; Mezailles, N.; Le Floch, P. Chem. Commun. 2009, 201–
203. (g) Mu¨ller, C.; Freixa, Z.; Lutz, M.; Spek, A. L.; Vogt, D.; van
Leeuwen, P. Organometallics 2008, 27, 834–838. (h) Mu¨ller, C.; Pidko,
E. A.; Totev, D.; Lutz, M.; Spek, A. L.; van Santen, R. A.; Vogt, D. Dalton
Trans. 2007, 5372–5375. (i) Mu¨ller, C.; Vogt, D. Dalton Trans. 2007, 5505–
5523.
(10) (a) Dunne, B. J.; Morris, R. B.; Orpen, A. G. J. Chem. Soc., Dalton
Trans. 1991, 653–661. (b) Orpen, A. G.; Connelly, N. G. Organometallics
1990, 9, 1206–1210.
(11) (a) Berthon-Gelloz, G.; Schumers, J. M.; De Bo, G.; Marko, I. E.
J. Org. Chem. 2008, 73, 4190–4197. (b) Denmark, S. E.; Wang, Z. G. Org.
Lett. 2001, 3, 1073–1076. (c) Hamze, A.; Provot, O.; Brion, J. D.; Alami,
M. Tetrahedron Lett. 2008, 49, 2429–2431. (d) Itami, K.; Mitsudo, K.;
Nishino, A.; Yoshida, J. J. Org. Chem. 2002, 67, 2645–2652. (e) Kingston,
J. V.; Verkade, J. G. J. Org. Chem. 2007, 72, 2816–2822. (f) Wu, W.; Li,
C. J. Chem. Commun. 2003, 1668–1669. (g) Green, M.; Spencer, J. L.;
Stone, F. G. A.; Tsipis, C. A. J. Chem. Soc., Dalton Trans. 1977, 1519–
1525. (h) Murphy, P. J.; Spencer, J. L.; Procter, G. Tetrahedron Lett. 1990,
31, 1051–1054.
10.1021/om900067f CCC: $40.75
2009 American Chemical Society
Publication on Web 04/01/2009