Mendeleev Commun., 2008, 18, 80–81
d13C 8.68 ppm) relative to Me on side A. An opposite is
This work was supported by the Volkswagen Foundation
(I/82 020), the Russian Foundation for Basic Research (project
no. 06-03-32754-a and 05-03-32558-a), the President of the
Russian Federation (grant for the support of leading scientific
schools no. 5148.2006.3). R. N. Naumov aknowledges the Inter-
national Postgraduate Program (DAAD) and Staatsministerium
für Wissenschaft und Kunst (SMWK) for the research grants.
Sh. K. Latypov acknowledges the Russian Science Support
Foundation for a doctoral grant. This investigation was carried
out at the NMR department of the Federal Collective Spectral
Analysis Center for Physical and Chemical Investigations of
Structure, Properties and Composition of Matter and Materials
(CKP SAC) and Federal CKP for Physical and Chemical
Investigations of Matter and Materials (FCKP PCI) (state contracts
nos. 02.451.11.7036 and 02.451.11.7019 of the Russian Federation
Ministry of Education and Science).
observed for other nuclei [e.g., o-Ph (1H) and ipso-Ph (13C)].
Such a low field shift of C*HMeA' is due to a close vicinity with
phosphorus lone pair at P(R)P(R) side, while on the P(S)P(S)
side the similar effects for nuclei of C*PhA are seen. This
hypothesis is supported by the chemical shift calculations for
simple model systems, and an inspection of X-ray and MM
minimised structures.§
Thus, the structure asymmetry for 1s and 1r was established by
NMR correlations (1H–1H COSY, 1H–13C HSQC, 1H–13C HMBC)
in a solution.§,11
†
All manipulations were carried out with standard high-vacuum and
dry-nitrogen techniques. The NMR experiments were carried out with
an Avance 600 (Bruker) specrtometer. 31P NMR (242.97 MHz), external
85% H3PO4; 1H NMR (600.13 MHz), internal solvent; 13C NMR
(150.90 MHz), internal solvent. The melting points were determined on a
Boetius apparatus and are uncorrected. Specific rotation was determined
on a Perkin–Elmer Model 341 polarimeter at 589 nm. Bis(mesityl-
phosphino)propane was synthesised according the method described
previously.8,10
References
1
(a) J.-M. Lehn, Supramolecular Chemistry, VCH Publishers, New
York, 1995; (b) Comprehensive Supramolecular Chemistry: Vol. 1,
Molecular Recognition: Receptors for Cationic Guests, ed. G. W. Gokel,
Pergamon, Oxford, 1996; (c) D. J. Cram, Science, 1998, 240, 760;
(d) L. F. Lindoy, The Chemistry of Macrocyclic Ligands and Complexes,
Cambridge University Press, 1989; (e) X. X. Zhang, J. S. Bradshaw and
R. M. Izatt, Chem. Rev., 1997, 97, 3313; (f) B. Botta, M. Botta,
A. Filippi, A. Tafi, G. D. Monache and M. Speranza, J. Am. Chem. Soc.,
2002, 124, 7658; (g) H. Nagata, H. Nishi, M. Kamigauchi and T. Ishida,
Org. Biomol., Chem., 2004, 2, 3470; (h) W.-L. Wong, K.-H. Huang, P.-
F. Teng, C.-S. Lee and H.-L. Kwong, Chem. Commun., 2004, 384; (i)
Di-1,9-(S,S)-a-methylbenzyl-3,7,11,15-tetramesityl-1,9-diaza-3,7,11,15-
(RSSR)-tetraphosphacyclohexadecane 1s. A solution of (S)- -methyl-
benzylamine (0.25 g, 2.0 mmol) in 5 ml of benzene was slowly added
to a solution of bis(mesitylphosphino)propane (0.71 g, 2.0 mmol) and
formaldehyde (4.3 mmol, 0.33 ml of 30% formaline) in 5 ml of benzene
for 5 min at 40 °C. After seven days, the reaction mixture was evaporated
and a white crystalline product was recrystallised from DMF. The resulting
crystals were collected by filtration and dried in a vacuum. Yield 0.74 g
A. Filippi, F. Gasparrini, M. Pierini, M. Speranza and C. Villani,
J.
1
(74%), mp 148–150 °C. 31P NMR (C6D6) d: –41.91, –41.75. H NMR
Am. Chem. Soc., 2005, 127, 11912; (j) Z.-B. Li and L. Pu, J. Mater.
Chem., 2005, 15, 2860.
3
(C6D6, d 7.15) d: 1.06 (d, 3H, MeA, JHH 6.8 Hz), 1.49 (d, 3H, MeA',
3JHH 7.0 Hz), 1.80–2.50 (m, 12H, PCH2CH2CH2P(A + A')), 2.08 (s, 6H,
p-MeA or A'), 2.09 (s, 6H, p-MeA or A'), 2.55 (s, 12H, o-MeA or A'), 2.61
(partly covered by o-MeA', P–CH2A'–N), 2.64 (s, 12H, o-MeA or A'), 3.03
(dd, 2H, P–CHA2 –N, 2JHH 12.8 Hz, 2JHP 10.0 Hz), 4.01 (d, 2H, P–CHA2 –N,
2
(a) K. Yamamoto, K. Ueno and K. Naemura, J. Chem. Soc., Perkin
Trans. 1, 1991, 2607; (b) Z. Li and C. Jablonski, Chem. Commun.,
1999, 1531; (c) G. J. Kim, D. W. Park and Y. S. Tal, Catal. Lett., 2000,
65127; (d) J. Gao, R. A. Zingaro, J. H. Reibenspies and A. E. Martell,
Org. Lett., 2004, 6, 2453; (e) Z. Gross and S. Ini, Org. Lett., 1999, 1,
2077; (f) J. P. Collman, Z. Yang, A. Strausmanis and M. Quelquejeu, J.
Am. Chem. Soc., 1999, 121, 460.
2JHH 12.8 Hz), 4.09 (d, 2H, P–CH2A'–N, JHH 13.0 Hz), 4.72 (m, 1H,
2
C*HA'), 4.80 (m, 1H, C*HA), 6.75 (s, 8H, m-H in Mes), 6.98 (dd, 1H,
p-HA', 3JHH 7.4 Hz, 3JHH 7.4 Hz), 7.05 (dd, 2H, m-HA' in Ph, 3JHH 7.4 Hz,
3JHH 7.4 Hz), 7.12–7.20 (o-HA' and p-HA overlapped with the C6D6), 7.29
(dd, 2H, m-HA in Ph, 3JHH 7.5 Hz, 3JHH 7.5 Hz), 7.49 (d, o-H, 3JHH 7.5 Hz).
13C{H} NMR (C6D6, d 128.02) d: 11.94 (s, MeA), 20.62 (s, MeA'), 20.93
3
4
(a) M. Widhalm and G. Klintschar, Chem. Ber., 1994, 127, 1411;
(b) M. Widhalm, H. Kalchhauser and H. Kählig, Helv. Chim. Acta,
1994, 77, 409.
(a) Y.-Y. Yan and M. Widhalm, Tetrahedron: Asymmetry, 1998, 9,
3607; (b) M. Widhalm, P. Wimmer and G. Klintschar, J. Organomet.
Chem., 1996, 523, 167; (c) O. Pàmies, G. Net, M. Widhalm, A. Ruiz
and C. Claver, J. Organomet. Chem., 1999, 587, 136.
(s, p-Me), 23.85 (d, o-MeA or A' 3JPC 18.8 Hz), 23.97 (d, o-MeA or A'
, ,
3JPC 18.3 Hz), 29.40–29.90 (m, PCH2CH2CH2P), 29.60 (s, PCH2CH2CH2P),
52.36 (d, P–CH2A or A'–N, 1JPC 9.7 Hz), 52.43 (d, P–CHA2 or A'–N, 1JPC 9.2 Hz),
3
3
58.76 (t, C*HA, JPC 8.9 Hz), 59.33 (t, C*HA', JPC 8.7 Hz), 126.87 (s,
p-CA in Ph), 127.05 (s, p-CA' in Ph), 128.00–128.54 (o-C(A + A') in Ph
overlapped with C6D6), 128.59 (s, m-CA in Ph), 128.76 (s, m-CA' in Ph),
129.95 (s, m-CA or A' in Mes), 130.00 (s, m-CA or A' in Mes), 131.27 (d,
5
6
(a) A. Caminade and J. P. Majoral, Chem. Rev., 1994, 94, 1183;
(b) S. Ekici, M. Nieger, R. Glaum and E. Niecke, Angew. Chem., Int.
Ed., 2003, 42, 435; (c) B. Lambert and J. F. Desreux, Synthesis, 2000,
1668; (d) P. G. Edwards, P. D. Newman and D. E. Hibbs, Angew.
Chem., Int. Ed. Engl., 2000, 39, 2722; (e) P. G. Edwards, M. L. Whatton
and R. Haigh, Organometallics, 2000, 19, 2652; (f) J. A. Harnisch and
R. J. Angelici, Inorg. Chim. Acta, 2000, 300, 273.
(a) G. Q. Li and R. Govind, Inorg. Chim. Acta, 1995, 231, 225;
(b) J. Powell, A. Lough and F. Wang, Organometallics, 1992, 11, 2289;
(c) L. Wei, A. Bell, K.-H. Ahn, M. M. Holl, S. Warner, I. D. Williams
and S. J. Lippard, Inorg. Chem., 1990, 29, 825.
ipso-CA or A' in Mes, JCP 20.4 Hz), 131.32 (d, ipso-CA or A' in Mes,
1
1JCP 21.4 Hz), 138.64 (s, p-CA or A' in Mes), 138.67 (s, p-CA or A' in Mes),
141.06 (s, ipso-CA' in Ph), 144.69 (d, o-CA or A' in Mes, JPC 14.2 Hz),
2
144.75 (d, o-CA or A' in Mes, JPC 14.2 Hz), 145.45 (s, ipso-CA in Ph).
2
[a]D20 +29 (c 0.001, C6H6). Found (%): C, 75.6; H, 8.1; N, 2.9; P, 12.4.
Calc. for C62H82P4N2 (979) (%): C 76.0, H 8.4, N 2.8, P 12.6.
1r was obtained analogously. Yield 0.65 g (36%), mp 148–150 °C.
[a]D20 –29 (c 0.001, C6H6). Found (%): C, 75.8; H, 8.1; N, 2.6; P, 12.3.
Calc. for C62H82P4N2 (979) (%): C, 76.0; H, 8.4; N, 2.8; P, 12.6.
7
8
9
Phosphorus-Carbon Heterocyclic Chemistry: The Rise of a New Domain,
ed. F. Mathey, Pergamon, Amsterdam, 2001, p. 11.
‡
R. N. Naumov, A. A. Karasik, O. G. Sinyashin, P. Lönnecke and E. Hey-
Hawkins, Dalton Trans., 2004, 3, 357.
A. S. Balueva, R. M. Kuznetsov, S. N. Ignat’eva, A. A. Karasik, A. T.
Gubaydullin, I. A. Litvinov, O. G. Sinyashin, P. Lönnecke and E. Hey-
Hawkins, Dalton Trans., 2004, 3, 442.
Crystallographic data for 1s: C62H82N2P4; M = 979.18, triclinic, space
–
group P1, a = 9.6643(9), b = 12.7047(11) and c = 13.2562(11) Å, a =
= 66.297(9)°, b = 87.254(10)°, g = 74.928(10)°, V = 1436.1(3) Å3, Z = 1,
dcalc = 1.132 mg cm–3; T = 173 K, m(MoK ) = 0.170 mm–1; 13824 reflec-
tions measured, 12026 independent reflections. Final R1 = 0.0374, Rw =
= 0.0816 for 7852 reflections with I ³ 2s(I), and R1 = 0.0563, Rw = 0.0853
for all reflections.
10 A. A. Karasik, R. N. Naumov, Y. S. Spiridonova, P. Lönnecke, E. Hey-
Hawkins and O. G. Sinyashin, Z. Anorg. Allg. Chem., 2007, 633, 205.
11 (a) W. R. Croasmun and R. M. K. Carlson, Two-Dimensional NMR
Spectroscopy, VCH, Weinheim, 1987; (b) A. E. Derome, Modern NMR
Techniques for Chemistry Research, Pergamon, Cambridge, 1988;
(c) Atta-ur-Rahman, One and Two Dimensional NMR Spectroscopy,
Elsevier, Amsterdam, 1989.
CCDC 680561 contains the supplementary crystallographic data for this
paper. These data can be obtained free of charge from The Cambridge
For details, see ‘Notice to Authors’, Mendeleev Commun., Issue 1, 2008.
§
Details of NMR experiments, as well as calculation data will be
published later in a separate paper.
Received: 26th September 2007; Com. 07/3019
– 81 –