D. Havrylyuk et al. / European Journal of Medicinal Chemistry 44 (2009) 1396–1404
1403
4.2.3.2. 2-[5-(4-Methoxyphenyl)-3-phenyl-4,5-dihydro-1H-pyrazol-
1-yl]-1,3-thiazol-4(5H)-one (12). Yield 72% (method A), 61%
(method B), mp 135–137 ꢁC. 1H NMR (300 MHz, DMSO-d6 þ CCl4):
one (16). Yield 59% (method A), mp 297–298 ꢁC. 1H NMR (300 MHz,
DMSO-d6 þ CCl4): 9.32 (brs, 2H), 7.88 (d, J ¼ 7.6 Hz, 2H), 7.56 (s,1H),
d
7.56–7.42 (m, 3H), 7.12 (t, J ¼ 7.9 Hz,1H), 6.96 (d, J ¼ 8.0 Hz,1H), 6.94
(s, 2H), 6.84 (d, J ¼ 8.0 Hz, 1H), 6.75 (t, J ¼ 7.9 Hz, 1H), 5.90 (dd,
J ¼ 11.6, 4.1 Hz, 1H), 4.09 (dd, J ¼ 17.9, 11.6 Hz, 1H), 3.38 (dd, J ¼ 17.9,
d
7.83 (d, J ¼ 7.3 Hz, 2H), 7.53–7.48 (m, 3H), 7.15 (d, J ¼ 8.7 Hz, 2H),
6.87 (d, J ¼ 8.7 Hz, 2H), 5.72 (dd, J ¼ 11.3, 3.8 Hz, 1H), 4.06 (dd,
J ¼ 18.3, 11.3 Hz, 1H), 3,84 (s, 2H), 3.73 (s, 3H), 3.36 (dd, J ¼ 18.3,
4.1 Hz, 1H), 3.92 (s, 6H). 13C NMR (100 MHz, DMSO-d6):
d 180.1
3.8 Hz, 1H). 13C NMR (100 MHz, DMSO-d6):
d
187.5 (C]O), 177.9
(C]O),170.5 (C]N, thiaz.),162.1 (C]N, pyraz.),155.1 (C–OH),148.9,
138.8,132.6,132.2,130.5,129.7,128.1,126.2,125.3,124.8,119.7,116.4,
108.4, 61.5, (CHCH2), 56.9 (O–CH3), 42.9 (CHCH2). EI-MS (m/z): 501
(Mþ). Anal. C27H23N3O5S (C, H, N).
(C]N, thiaz.), 161.2 (C]N, pyraz.), 159.4 (C–OH), 133.1, 132.2, 130.5,
129.7, 128.0, 127.8, 114.9, 63.9 (CHCH2), 55.8 (O–CH3), 44.0 (CHCH2),
40.4 (CH2). Anal. C19H17N3O2S (C, H, N).
4.2.4. General procedure for synthesis of 5-arylidene-2-(5-aryl-3-
phenyl-4,5-dihydro-1H-pyrazol-1-yl)-1,3-thiazol-4(5H)-ones
(13–18)
4.2.4.5. 5-(4-Nitrobenzylidene)-2-[5-(4-methoxyphenyl)-3-phenyl-
4,5-dihydro-1H-pyrazol-1-yl]-1,3-thiazol-4(5H)-one (17). Yield 73%
(method A), 69% (method B), mp 293–294 ꢁC. 1H NMR (300 MHz,
Method A. A mixture of compounds 11 or 12 (3 mmol), appro-
priate aldehyde (4 mmol) and anhydrous sodium acetate (3 mmol)
was refluxed for 5 h in glacial acetic acid (30 ml). Powder obtained
after cooling was filtered off, washed with methanol and recrys-
tallized with DMF:ethanol or DMF:acetic acid, 1:2 mixtures.
Method B. A mixture of 3-phenyl-5-aryl-1-thiocarbamoyl-2-
pyrazoline (10 mmol), chloroacetic acid (10 mmol), appropriate
aldehyde (12 mmol) and anhydrous sodium acetate (10 mmol) was
refluxed for 5 h in glacial acetic acid (10 ml). Powder obtained after
cooling was filtered off, washed with methanol and recrystallized
with DMF:ethanol or DMF:acetic acid, 1:2 mixtures.
DMSO-d6 þ CCl4):
d
8.35 (d, J ¼ 8.7 Hz, 2H), 7.96 (d, J ¼ 8.7 Hz, 4H),
7.75 (s, 1H), 7.59–7.52 (m, 3H), 7.22 (d, J ¼ 8.6 Hz, 2H), 6.92 (d,
J ¼ 8.6 Hz, 2H), 5.88 (dd, J ¼ 11.1, 3.7 Hz, 1H), 4.17 (dd, J ¼ 18.3,
11.1 Hz, 1H), 3.71 (s, 3H), 3.40 (dd, J ¼ 18.3, 3.7 Hz, 1H). 13C NMR
(100 MHz, DMSO-d6):
d 179.3 (C]O), 170.5 (C]N, thiaz.), 162.9
(C]N, pyraz.), 159.7 (C–OH), 147.8, 140.9, 132.9, 132.6, 132.5, 131.3,
130.1, 129.7, 128.9, 128.2, 128.1, 124.9, 114.9, 64.3 (CHCH2), 55.8 (O–
CH3), 44.2 (CHCH2). EI-MS (m/z): 484 (Mþ). Anal. C26H20N4O4S (C,
H, N).
4.2.4.6. 5-(4-Dimethylaminobenzylidene)-2-[5-(4-methoxyphenyl)-
3-phenyl-4,5-dihydro-1H-pyrazol-1-yl]-1,3-thiazol-4(5H)-one
(18). Yield 59% (method A), 65% (method B), mp 258–259 ꢁC. 1H
4.2.4.1. 5-(2-Chlorobenzylidene)-2-[5-(2-hydroxyphenyl)-3-phenyl-
4,5-dihydro-1H-pyrazol-1-yl]-1,3-thiazol-4(5H)-one (13). Yield 59%
(method A), mp 268–269 ꢁC. 1H NMR (300 MHz, DMSO-d6 þ CCl4):
NMR (300 MHz, DMSO-d6 þ CCl4):
d
7.88 (d, J ¼ 7.8 Hz, 2H), 7.56 (s,
1H), 7.55–7.42 (m, 5H), 7.19 (d, J ¼ 8.6 Hz, 2H), 6.91 (d, J ¼ 8.6 Hz, 2H),
6.82 (d, J ¼ 8.8 Hz, 2H), 5.81 (dd, J ¼ 11.2, 4.0 Hz, 1H), 4.12 (dd,
J ¼ 18.4, 11.2 Hz, 1H), 3.71 (s, 3H), 3.45 (dd, J ¼ 18.4, 4.0 Hz, 1H). 13C
d
9.75 (s, 1H), 7.87 (d, J ¼ 7.4 Hz, 2H), 7.85 (s, 1H), 7.70 (d, J ¼ 7.3 Hz,
1H), 7.52–7.42 (m, 5H), 7.39 (t, J ¼ 7.5 Hz, 1H), 7.09 (t, J ¼ 7.1 Hz, 1H),
6.93 (d, J ¼ 7.5 Hz,1H), 6.87 (d, J ¼ 8.0 Hz,1H), 6.73 (t, J ¼ 7.4 Hz,1H),
5.94 (dd, J ¼ 11.4, 4.1 Hz 1H), 4.08 (dd, J ¼ 18.0,11.4 Hz,1H), 3.38 (dd,
NMR (100 MHz, DMSO-d6): d 187.5 (C]O),177.9 (C]N, thiaz.),161.2
(C]N, pyraz.), 159.5 (C–OH), 152.1 (4-NMe2), 133.1, 132.7, 132.2,
130.5, 129.7, 127.9, 127.8, 114.9, 112.7, 63.9 (CHCH2), 55.8 (O–CH3),
44.0 (CHCH2). EI-MS (m/z): 482 (Mþ). Anal. C28H26N4O2S (C, H, N).
J ¼ 18.0, 4.1 Hz, 1H). 13C NMR (100 MHz, DMSO-d6):
d 179.3 (C]O),
170.6 (C]N, thiaz.), 162.9 (C]N, pyraz.), 155.1 (C–OH), 134.9, 132.7,
132.5, 132.4, 131.9, 130.9, 130.4, 129.8, 129.7, 129.6, 128.8, 128.1,
126.3, 125.9, 119.7, 116.4, 61.8 (CHCH2), 42.9 (CHCH2). Anal.
C25H18ClN3O2S (C, H, N).
4.3. Pharmacology
Primary anticancer assay was performed at approximately
sixty human tumor cell lines panel derived from nine neoplastic
diseases, in accordance with the protocol of the Drug Evaluation
Branch, National Cancer Institute, Bethesda [18–22]. Tested
compounds were added to the culture at a single concentration
(10ꢀ5 M) and the cultures were incubated for 48 h. End point
determinations were made with a protein binding dye, sulfo-
rhodamine B (SRB). Results for each tested compound were
reported as the percent of growth of the treated cells when
compared to the untreated control cells. The percentage growth
was evaluated spectrophotometrically versus controls not treated
with test agents. The cytotoxic and/or growth inhibitory effects
of the most active selected compounds were tested in vitro
against the full panel of about 60 human tumor cell lines at 10-
fold dilutions of five concentrations ranging from 10ꢀ4 to
10ꢀ8 M. A 48-h continuous drug exposure protocol was followed
and an SRB protein assay was used to estimate cell viability or
growth.
4.2.4.2. 5-(4-Chlorobenzylidene)-2-[5-(2-hydroxyphenyl)-3-phenyl-
4,5-dihydro-1H-pyrazol-1-yl]-1,3-thiazol-4(5H)-one (14). Yield 68%
(method A), 69% (method B), mp 284–286 ꢁC. 1H NMR (300 MHz,
DMSO-d6 þ CCl4):
d
9.74 (s, 1H), 7.88 (d, J ¼ 8.0 Hz, 2H), 7.60 (d,
J ¼ 8.5 Hz, 2H), 7.57 (s, 1H), 7.50–7.42 (m, 5H), 7.08 (t, J ¼ 7.5 Hz, 1H),
6.92 (d, J ¼ 8.0 Hz, 1H), 6.86 (d, J ¼ 8.0 Hz, 1H), 6.73 (t, J ¼ 7.4 Hz,
1H), 5.97 (dd, J ¼ 11.4, 4.5 Hz, 1H), 4.08 (dd, J ¼ 18.1, 11.4 Hz, 1H),
3.38 (dd, J ¼ 18.1, 4.5 Hz,1H). 13C NMR (100 MHz, DMSO-d6):
d 179.7
(C]O), 170.4 (C]N, thiaz.), 162.6 (C]N, pyraz.), 155.1 (C–OH),
135.0, 133.5, 132.3, 131.9, 130.4, 129.9, 129.8, 129.7, 129.6, 128.1,
126.0, 119.7, 116.4, 61.7 (CHCH2), 42.9 (CHCH2). Anal. C25H18ClN3O2S
(C, H, N).
4.2.4.3. 5-(3-Bromobenzylidene)-2-[5-(2-hydroxyphenyl)-3-phenyl-
4,5-dihydro-1H-pyrazol-1-yl]-1,3-thiazol-4(5H)-one (15). Yield 62%
(method A), mp 272–274 ꢁC. 1H NMR (300 MHz, DMSO-d6 þ CCl4):
d
9.84 (s, 1H), 7.89 (d, J ¼ 7.9 Hz, 2H), 7.74 (s, 1H), 7.59 (d, J ¼ 8.6 Hz,
1H), 7.56–7.40 (m, 6H), 7.08 (t, J ¼ 8.2 Hz, 1H), 6.92 (d, J ¼ 8.2 Hz,
1H), 6.86 (d, J ¼ 8.2 Hz, 1H), 6.72 (t, J ¼ 8.2 Hz, 1H), 5.98 (dd, J ¼ 11.3,
4.5 Hz, 1H), 4.08 (dd, J ¼ 18.4, 11.3 Hz, 1H), 3.38 (dd, J ¼ 18.4, 4.5 Hz,
Using the seven absorbance measurements [time zero, (Tz),
control growth in the absence of drug, (C), and test growth in
the presence of drug at the five concentration levels (Ti)],
the percentage growth was calculated at each of the drug
concentrations levels. Percentage growth inhibition was calculated
as:
1H). 13C NMR (100 MHz, DMSO-d6):
d 179.5 (C]O), 170.4 (C]N,
thiaz.), 162.8 (C]N, pyraz.), 155.1 (C–OH), 137.1, 133.1, 132.4, 131.9,
130.5, 130.4, 129.7, 128.6, 128.1, 126.0, 123.1, 119.7, 116.4, 61.8
(CHCH2), 42.9 (CHCH2). Anal. C25H18BrN3O2S (C, H, N).
½ðTi ꢀ TzÞ=ðC ꢀ TzÞꢄ ꢅ 100
4.2.4.4. 5-(4-Hydroxy-3,5-dimethoxybenzylidene)-2-[5-(2-hydrox-
yphenyl)-3-phenyl-4,5-dihydro-1H-pyrazol-1-yl]-1,3-thiazol-4(5H)-
for concentrations for which Ti ꢆ Tz,