Brief Article
Journal of Medicinal Chemistry, 2010, Vol. 53, No. 22 8191
CH2-Ph), 3.87 (d, J = 10.5 Hz, 1H, CH2-Ph), 6.48 (d, J = 6.1,
1H, H-2), 7.10-7.36 (m, 6H, Ar-H, pyridyl H-5), 7.58 (ddd, J =
8.8, 2.3, 1.6 Hz, 1H, pyridyl H-4), 8.38 (dd, J = 5.0, 1.6 Hz, 1H,
pyridyl H-6), 8.58 (dd, J = 2.4, 0.6 Hz, 1H, pyridyl H-2). 13C
NMR (300 MHz, CDCl3) δ 32.8 (C-1), 35.7 (C-4), 35.8 (C-8),
57.6 (C-5), 59.6 (C-7), 62.4 (Ar-CH2-N), 123.0 (pyridyl C-5),
126.8 (Ar C-4), 128.2 (Ar C-3, Ar C-5,), 128.5 (Ar C-2), 131.6
(C-2), 131.7 (C-3), 131.9 (pyridyl C-4), 135.9 (pyridyl C-3),
146.5 (pyridyl C-2), 148.0 (pyridyl C-6). MS (APCI) m/z: 277.0
(M þ H)þ.
way expresses a large variety of uncommon nAChR subtypes,
but only the alpha3beta4* and alpha3beta3beta4* subtypes
mediate acetylcholine release. J. Neurosci. 2009, 29, 2272–2282.
(17) Quick, M. W.; Ceballos, R. M.; Kasten, M.; McIntosh, J. M.;
Lester, R. A. Alpha3beta4 subunit-containing nicotinic receptors
dominate function in rat medial habenula neurons. Neuropharma-
cology 1999, 38, 769–783.
(18) Salas, R.; Cook, K. D.; Bassetto, L.; De Biasi, M. The alpha3 and
beta4 nicotinic acetylcholine receptor subunits are necessary for
nicotine-induced seizures and hypolocomotion in mice. Neurophar-
macology 2004, 47, 401–407.
(19) Glick, S. D.; Kuehne, M. E.; Maisonneuve, I. M.; Bandarage, U. K.;
Molinari, H. H. 18-Methoxycoronaridine, a non-toxic iboga alkaloid
congener: effects on morphine and cocaine self-administration and on
mesolimbic dopamine release in rats. Brain Res. 1996, 719, 29–35.
(20) Glick, S. D.; Maisonneuve, I. M.; Visker, K. E.; Fritz, K. A.;
Bandarage, U. K.; Kuehne, M. E. 18-Methoxycoronardine attenu-
ates nicotine-induced dopamine release and nicotine preferences in
rats. Psychopharmacology (Berlin) 1998, 139, 274–280.
(21) Glick, S. D.; Maisonneuve, I. M.; Dickinson, H. A. 18-MC reduces
methamphetamine and nicotine self-administration in rats. Neuro-
Report 2000, 11, 2013–2015.
(22) Pace, C. J.; Glick, S. D.; Maisonneuve, I. M.; He, L. W.; Jokiel,
P. A.; Kuehne, M. E.; Fleck, M. W. Novel iboga alkaloid congeners
block nicotinic receptors and reduce drug self-administration. Eur.
J. Pharmacol. 2004, 492, 159–167.
(23) Glick, S. D.; Ramirez, R. L.; Livi, J. M.; Maisonneuve, I. M. 18-
Methoxycoronaridine acts in the medial habenula and/or inter-
peduncular nucleus to decrease morphine self-administration in
rats. Eur. J. Pharmacol. 2006, 537, 94–98.
(24) Glick, S. D.; Maisonneuve, I. M.; Kitchen, B. A. Modulation of
nicotine self-administration in rats by combination therapy with
agents blocking alpha 3 beta 4 nicotinic receptors. Eur. J. Pharma-
col. 2002, 448, 185–191.
Acknowledgment. This work was supported by a NIH-
NIDA Grant R01-DA020811.
Supporting Information Available: Experimental details and
analytical data for all intermediates in Schemes 1-3, biological
evaluation, and in vitro assay protocols. This material is avail-
References
(1) Gotti, C.; Fornasari, D.; Clementi, F. Human neuronal nicotinic
receptors. Prog. Neurobiol. 1997, 53, 199–237.
(2) McGehee, D. S.; Role, L. W. Physiological diversity of nicotinic
acetylcholine receptors expressed by vertebrate neurons. Annu.
Rev. Physiol. 1995, 57, 521–546.
(3) McGehee, D. S.; Heath, M. J.; Gelber, S.; Devay, P.; Role, L. W.
Nicotine enhancement of fast excitatory synaptic transmission in
CNS by presynaptic receptors. Science 1995, 269, 1692–1696.
(4) Perry, D. C.; Xiao, Y.; Nguyen, H. N.; Musachio, J. L.; Davila-Garcia,
M. I.; Kellar, K. J. Measuring nicotinic receptors with characteristics
of alpha4beta2, alpha3beta2 and alpha3beta4 subtypes in rat tissues
by autoradiography. J. Neurochem. 2002, 82, 468–481.
(5) Xiao, Y.; Kellar, K. J. The comparative pharmacology and up-
regulation of rat neuronal nicotinic receptor subtype binding sites
stably expressed in transfected mammalian cells. J. Pharmacol.
Exp. Ther. 2004, 310, 98–107.
(6) Gotti, C.; Clementi, F.; Fornari, A.; Gaimarri, A.; Guiducci, S.;
Manfredi, I.; Moretti, M.; Pedrazzi, P.; Pucci, L.; Zoli, M. Struc-
tural and functional diversity of native brain neuronal nicotinic
receptors. Biochem. Pharmacol. 2009, 78, 703–711.
(7) Tapper, A. R.;McKinney, S. L.;Nashmi, R.;Schwarz, J.;Deshpande,
P.; Labarca, C.; Whiteaker, P.; Marks, M. J.; Collins, A. C.; Lester,
H. A. Nicotine activation of alpha4* receptors: sufficient for reward,
tolerance, and sensitization. Science 2004, 306, 1029–1032.
(8) Picciotto, M. R. Common aspects of the action of nicotine and
other drugs of abuse. Drug Alcohol Depend. 1998, 51, 165–172.
(9) Epping-Jordan, M. P.; Picciotto, M. R.; Changeux, J. P.; Pich,
E. M. Assessment of nicotinic acetylcholine receptor subunit
contributions to nicotine self-administration in mutant mice.
Psychopharmacology (Berlin) 1999, 147, 25–26.
(10) Jorenby, D. E.; Hays, J. T.; Rigotti, N. A.; Azoulay, S.; Watsky,
E. J.; Williams, K. E.; Billing, C. B.; Gong, J.; Reeves, K. R.
Efficacy of varenicline, an alpha4beta2 nicotinic acetylcholine
receptor partial agonist, vs placebo or sustained-release bupropion
for smoking cessation: a randomized controlled trial. JAMA,
J. Am. Med. Assoc. 2006, 296, 56–63.
(11) Gonzales, D.; Rennard, S. I.; Nides, M.; Oncken, C.; Azoulay, S.;
Billing, C. B.; Watsky, E. J.; Gong, J.; Williams, K. E.; Reeves,
K. R. Varenicline, an alpha4beta2 nicotinic acetylcholine receptor
partial agonist, vs sustained-release bupropion and placebo for
smoking cessation: a randomized controlled trial. JAMA, J. Am.
Med. Assoc. 2006, 296, 47–55.
(12) West, R.; Baker, C. L.; Cappelleri, J. C.; Bushmakin, A. G. Effect
of varenicline and bupropion SR on craving, nicotine withdrawal
symptoms, and rewarding effects of smoking during a quit attempt.
Psychopharmacology (Berlin) 2008, 197, 371–377.
(13) Gonzales, D.; Rennard, S. I.; Jorenby, D. E.; Reeves, K. R.
Comment: Oral varenicline for smoking cessation. Ann. Pharma-
cother. 2007, 41, 720–721.
(14) Glick, S. D.; Maisonneuve, I. M.; Kitchen, B. A.; Fleck, M. W.
Antagonism of alpha 3 beta 4 nicotinic receptors as a strategy to
reduce opioid and stimulant self-administration. Eur. J. Pharma-
col. 2002, 438, 99–105.
(15) Poth, K.; Nutter, T. J.; Cuevas, J.; Parker, M. J.; Adams, D. J.;
Luetje, C. W. Heterogeneity of nicotinic receptor class and subunit
mRNA expression among individual parasympathetic neurons
from rat intracardiac ganglia. J. Neurosci. 1997, 17, 586–596.
(16) Grady, S. R.; Moretti, M.; Zoli, M.; Marks, M. J.; Zanardi, A.; Pucci,
L.; Clementi, F.; Gotti, C. Rodent habenulo-interpeduncular path-
(25) Glick, S. D.; Maisonneuve, I. M.; Szumlinski, K. K. 18-Methoxy-
coronaridine (18-MC) and ibogaine: comparison of antiaddictive
efficacy, toxicity, and mechanisms of action. Ann. N.Y. Acad. Sci.
2000, 914, 369–386.
(26) Kuehne, M. E.; He, L.; Jokiel, P. A.; Pace, C. J.; Fleck, M. W.;
Maisonneuve, I. M.; Glick, S. D.; Bidlack, J. M. Synthesis and
biological evaluation of 18-methoxycoronaridine congeners. Po-
tential antiaddiction agents. J. Med. Chem. 2003, 46, 2716–2730.
(27) Papke, R. L.; Sanberg, P. R.; Shytle, R. D. Analysis of mecamy-
lamine stereoisomers on human nicotinic receptor subtypes.
J. Pharmacol. Exp. Ther. 2001, 297, 646–656.
(28) Buchhalter, A. R.; Fant, R. V.; Henningfield, J. E. Novel pharma-
cological approaches for treating tobacco dependence and with-
drawal: current status. Drugs 2008, 68, 1067–1088.
(29) Lippiello, P. M.; Beaver, J. S.; Gatto, G. J.; James, J. W.; Jordan,
K. G.; Traina, V. M.; Xie, J.; Bencherif, M. TC-5214 (S-(þ)-
mecamylamine): a neuronal nicotinic receptor modulator with anti-
depressant activity. CNS Neurosci. Ther. 2008, 14, 266–277.
(30) Hernandez, S. C.; Bertolino, M.; Xiao, Y.; Pringle, K. E.; Caruso,
F. S.; Kellar, K. J. Dextromethorphan and its metabolite dextror-
phan block alpha3beta4 neuronal nicotinic receptors. J. Pharma-
col. Exp. Ther. 2000, 293, 962–967.
(31) Sheridan, R. P.; Nilakantan, R.; Dixon, J. S.; Venkataraghavan, R.
The ensemble approach to distance geometry: application to the
nicotinic pharmacophore. J. Med. Chem. 1986, 29, 899–906.
(32) Romanelli, M. N.; Gratteri, P.; Guandalini, L.; Martini, E.; Bonaccini,
C.; Gualtieri, F. Central nicotinic receptors: structure, function, ligands,
and therapeutic potential. ChemMedChem 2007, 2, 746–767.
ꢀ
(33) Cassels, B. K.; Bermudez, I.; Dajas, F.; Abin-Carriquiry, J. A.;
Wonnacott, S. From ligand design to therapeutic efficacy: the
challenge for nicotinic receptor research. Drug Discovery Today
2005, 10, 1657–1665.
(34) Astles, P. C.; Baker, S. R.; Boot, J. R.; Broad, L. M.; Dell,
C. P.; Keenan, M. Recent progress in the development of sub-
type selective nicotinic acetylcholine receptor ligands. Curr. Drug
Targets: CNS Neurol. Disord. 2002, 1, 337–348.
(35) Breining, S. R. Recent developments in the synthesis of nicotinic
acetylcholine receptor ligands. Curr. Top. Med. Chem. 2004, 4, 609–629.
(36) Carroll, F. I. Epibatidine structure-activity relationships. Bioorg.
Med. Chem. Lett. 2004, 14, 1889–1896.
(37) Fitch, R. W.; Xiao, Y.; Kellar, K. J.; Daly, J. W. Membrane
potential fluorescence: a rapid and highly sensitive assay for
nicotinic receptor channel function. Proc. Natl. Acad. Sci. U. S. A.
2003, 100, 4909–4914.
(38) Struthers,A.M.;Wilkinson,J.L.;Dwoskin,L.P.;Crooks,P.A.;Bevins,
R. A. Mecamylamine, dihydro-beta-erythroidine, and dextromethor-
phan block conditioned responding evoked by the conditional stimulus
effects of nicotine. Pharmacol., Biochem. Behav. 2009, 94, 319–328.